{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Monte Carlo simulation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our goal is to estimate our profit $P$ based on the following variable\n", "- $V$ - volume of production (number of produced units)\n", "- $p$ - price of one unit\n", "- $fc$ - fixed cost\n", "- $vc$ - variable cost\n", "\n", "using the formula $P = V\\cdot (p-vc)-fc$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For each variable, we have received three estimation - minimum, best guess and maximum:\n", "\n", "$V=(10\\,000; 40\\, 000; 100\\,000)$\n", "\n", "$p=(100; 110; 150)$\n", "\n", "$fc=(140\\,000; 300\\, 000; 420\\,000)$\n", "\n", "$vc=(10; 30; 105)$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the calculation we will use Monte Carlo simulation method and we will use triangular probability distribution." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "n =\n", "\n", " 10000000\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAB3RJTUUH5gIGFAcRbbzjGgAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAwNi1GZWItMjAyMiAyMjowNzoxN7HhF2cAAB9ASURBVHic7d1fbBTX2cfxp+BxsNcFQes6QUKYP40vQBC7sEZt3GAJblAbCYhSiWSRSJQGR3ZXVkFIgTghci9SqVTprohsIV7BCiSUXqSSg1BQhCwTS3tkXKewljZu6r2IjWqkBgxm8Y5Z3osp0wVjs5jdnTOz3496cWYY4CHu+uc555kzP7h3754AAOC0eU4XAACACIEEANAEgQQA0AKBBADQAoEEANACgQQA0AKBBADQAoEEANACgQQA0AKBBADQAoEEANACgQQA0AKB9MT27NlTV1e3adOmTZs2/e1vf3O6HADwiBKnC3Clzs7ODRs2OF0FAHgKgTQXg4ODyWTyZz/7WXl5udO1AIBHMGX3xJ577rl//OMff/3rX1966aWenh6nywEAj/hBkb+gL51O9/f3j4yMTE1N7dy5M/OXhoaGTp06lUwmt27dumXLlum/t7u7+4MPPrhw4UKhigUALyv2Kbu2trZz586tWrVqcHAwM5Di8firr766d+/eJUuWHD58eHR0dPfu3Q/93p///Oejo6OFrRcAPKvY75BM0zQMo7u7u7m5+fLly/b5t99+e+XKlQcOHBCR7u7uYDB46dKl+fPnm6YpIoZhiMiZM2dOnDhx9uxZp4oHAC/x+B1SOp3+17/+tXr1avvM6OjowoULKyoqrEMrWqa7ePHirl27rHFDQ0Mqlert7W1oaJicnPzlL3+5fv3669evT0xM/PnPf873PwEAioTHA2nevHmff/755s2b169fLyKjo6ORSMS675lFMpmcmpqqrq62/5Dy8vKbN2+KSEVFRX9/fzKZFJGysrL8Vg8AxcTjgSQiwWDw448/FpHKysps0khErGnMyspK+0xJScndu3ftQ6IIAHKuKNq+g8Hg2bNnjx49mk0ayf15vMHBQfvMnTt3CCEAyKuiCKREIpFOp5cvX/71119nc71hGEuXLr169ap1eO3atWQymbkQBQDIOe8HUiKROHXq1MGDB996663e3t6HMimdTpumaU3HmaZpNdGJyPbt248dOzY5OSkiHR0dtbW19pISACAf9Gr7HhoaOn/+/PDwsM/ne/nll+vq6h55WV9fXyKRsA83bty4fPnyR16ZTqePHDmyb98++8zRo0dff/31hQsXWodnz55tbW3N/C1XrlwxDMM0zdbW1p6enoqKikWLFnV0dCxbtuwp/3UAgFnoFUgbN27cvHlzfX19PB4/ffp0e3v79u3bp1926NAhpVRtba11+Jvf/Gam6HpK4+PjN27cIIoAoAD06rL78ssv7XuXRYsWffLJJ48MJBHx+/3t7e35rmfhwoV2PQCAvNJrDSnzu39lZaW9ojPd5ORkT09PLBYrSF0AgLzT6w7JZppmJBJ5aLfTTOfPnx8ZGYnFYlVVVZ2dnXQcAIDb6bWGZPvd735348aN48ePz58/f/qvXrt2zXpq1Wo9SCQSXV1d0y8LBAJKqbzXCgBu4Pf7I5GI01XMRsdA2rdv33fffXf8+PFsXn8Xi8V27NgxMDAw/cHVmpqaeDyenxqRe3y9XIcvmbvo//XSbsruwIED33777YkTJ7J8GWsqlRKRkhLt/iEAgCeiV1PDoUOHLl++3NnZWVZWlvmY6pkzZ06ePGlf1tvbaw2uX78eDofXrVs306bdAAC30OvG4tNPPxWRF1980TosLS213lHU398/MTFhvyJv//794+PjCxYsmJiYqKurC4fDThWMHGpubna6BDwZvmTILR3XkHJF/wlTACgY/b8l6jVlBwAoWnpN2cFLQqFQZtu9Pfb7/S0tLX6/36G6AGiKQEK+KKViylcq1SIyIRcWy55SWSEiA+q4w5UB0BKBhFxSSkWjUXtsh9CEXHC0LgAuQCAhlwKBgE8arbF1bzTTZdaA6TsANgIJOVZxP5C+l+GZrmH6DsB0BBIcFgqF7LHmG20ByCvavuGwmPINqTVDas2AGssMJwDFhjskPK2n3FW9VKqt6buUJHJWEwAXIpDwtJRSVfKhNf63tDlbDAD3YsoOAKAFAgkAoAUCCRoJh8M19/G2X6DYsIYEjfik0XqM6ZZciEajPDALFBXukAAAWuAOCXPBfBqAnCOQMBehUGhAjTldBQBPIZAwFzx7BCDnWEOCpui4A4oNd0jQFB13QLHhDgkAoAUCCQCgBQIJAKAFAgkAoAUCCS5Axx1QDOiygwvQcQcUA+6QAABa4A4J2aqpqXG6BABeRiAhK0qpUqleLG9Yh2wXBCDnmLIDAGiBOyS4jFIqFApZ4/r6ehocAM8gkOAyA2ospmLWWCkViUScrQdArhBIcBlDVlgt4CkZFok5XQ6AnGENCQCgBQIJAKAFAgkAoAUCCQCgBZoa4G72Xqv0fwNuRyDBxZRSbwbes8a/bf5VS0uLs/UAeBoEEmaTuX9dqVQ7V8ij2bsZpWSY11IAbkcgYUaZ+9elZHhCLjhdEQAvo6kBAKAFAgkAoAUCCQCgBdaQ4B3sAg64GoEEj1BKxZTPHrMLOOA6BBI8olSq2QUccDXWkAAAWiCQAABaIJAAAFogkAAAWqCpAR6klLJ34fP7/XTcAa5AIMGD7C34RESpNmeLAZAlpuwAAFrgDgkPU0pFo1HJePcdABQAgYQHKKUCgYBPGkVExOdwNQCKCYGEh2VueWDKsNPlACgWrCEBALTgyjukoaGh8+fPDw8P+3y+l19+ua6uzumKoDV7MYwtwAGduTKQdu3atXnz5vr6+ng8HggE2tvbt2/f7nRR0NebgfesQUoS8Xjc2WIAzMSVgfTll18uXLjQGi9atOiTTz4hkDAL+5mkfwvPJAH6cuUakp1GIlJZWWmapoPFAABywpWBZDNNMxKJ7Ny5c6YLau6z3yUKAMUjFArZ3wadruXxXDllZ/v973//ox/9qKmpaaYLWDAAUMxaWlpaWlqssf6Z5OJA2rdv39jY2PHjx+fPn+90LQCAp+XWQDpw4MC333574sSJ8vJyp2uBmwQCAWvg9/vtnxwB6MCVgXTo0KHLly+fOHGirKzM6mgwDMPpouAOQ2qNNVAqTCABWnFlIH366aci8uKLL1qHpaWlly9fdrQiuEaprHC6BACP5spAolUh5zJXO0ul2rlCABQvVwYSckspZb/RLiXDE3LB6YoAFCN3P4cEAPAMAgkAoAUCCQCgBQIJAKAFmhpQvHhIFtAKgYTixUOygFYIJBQvHpIFtMIaEgBACwQSAEALBBIAQAusIQEiIkope+z3+x2sBChaBBIgIvJm4D1rkJJEJBIhk4DCI5CKl31PEI1Gna1EB9besiLyvRx3thKgaBFIRSoUCnWGu5yuAgD+h0AqXoasqJBG4ZUTAPRAlx0AQAsEEgBACwQSAEALrCEBD4tGo3bnIZuuAgVDIAEP6wx3GbJCREwZrq+v55kkoDAIJOBhPmm0NgL/XoadrgUoIqwhAQC0QCABALRAIAEAtEAgAQC0QFMDMBtawIGCIZCKSygUsgZKKRGfs8W4Ai3gQMEQSEXE2uH7/rfXMWuA2dECDhQMgVRc7B2+bzldCQA8hKYGAIAWCCQAgBaYsgOyZbeE+P1+Ou6AnCOQgGzFlK9UqkVkQHXRcQfkHFN2QLZKpbpUVpTSnQjkB4EEANACgQQA0AKBBADQAoEEANACXXbAXNgt4CISiUQcrATwDO6QgLmIKd+QWjOk1gyoscxwAjBn3CF5nFLqwW+X7PCdG1YLuIikJOF0LYBHEEgeF41G7cc5J+QCO3wD0BaBVBT4WR6A/lhDAgBogUACAGiBQAIAaIE1JOBpZbYy8loKYM4IJOBpDaixmIqJiCnDQiYBc0UgAU/LkBUV0igit5yuBHA11pAAAFogkAAAWiCQAABaIJAAAFqgqQHIJVrAgTkjkIBcogUcmDMCyZvsH9KVUrxyopBoAQfmTK9ASqfT/f39IyMjU1NTO3funOmyvr6+RCJhH27cuHH58uWFqM8lQqFQZ7jLetOEKWO8cgKAK+gVSG1tbefOnVu1atXg4OAsgfTZZ58ppWpra63DlStXEkgP4ed0AK6jVyC9//777e3t3d3dzc3Ns1/p9/vb29sLUxUAoAD0avs2DCPLKycnJ3t6emKxWF7rAQAUjF53SNk7f/78yMhILBarqqrq7Oysrq52uiLgYeFwWClljf1+Px13wOz0ukPKUjAYHBgYOH36dF9f3/PPPz/L/F7NfXbXGVAwPmkcUmuG1JqY8tnJBBRSKBSyvw06XcvjufIOqbKy0hoYhtHU1LRjx45kMllWVjb9yng8XtjSgAeU/q/FkellOKClpcW+Ndc/k1x5h5QplUqJSEmJK5MVAGDTK5DS6bRpmnfv3hUR0zRN07TOnzlz5uTJk/Zlvb291uD69evhcHjdunXZd0MAAPSk143FuXPnWltbrfHatWtF5MqVK4Zh9Pf3T0xM7N692/ql/fv3j4+PL1iwYGJioq6uLhwOO1YxACBH9Aqkbdu2bdu2bfr5jz76KPPwq6++KlRFAIAC0WvKDgBQtPS6QwI8zH72oL6+3u/3O1sMoCECyTt40kVnSqmY8tnjSCTibD2Ahggkj7B2+LbGKUn4pNHZevCQUqm2trtNyTDPJAGPRCB5hFLKJ43WY5i35ILT5QDAE6OpAQCgBQIJAKAFAgkAoAUCCSg0pRT70APT0dQAFFqpVC+WN0QkJcM06wM27pAAAFogkAAAWiCQAABaIJAAAFqgqQFwmN3XwI6rKHIEEuAkpdSbgfes8W+bf9XS0uJsPYCDCCR3o2nY7WgBB2wEkos9tMP3YlnjbD0A8DQIJBfL3OH7eznudDkA8FTosgMAaIFAAgBogSk7QCO0gKOYEUiALjJbwFOSiMfjztYDFBiBBOjCbgEXkX9Lm7PFAIXHGhIAQAsEEgBACwQSAEALBBIAQAsEEgBAC3TZAZrimSQUGwIJ0BTPJKHYEEguEwqFwuGwfcgO3x7GM0koNgSSyyilFssedvgG4D00NQAAtEAgAQC0QCABALTAGhLgArSAoxgQSIAL0AKOYkAgAS5ACziKAWtIAAAtEEgAAC0QSAAALRBIAAAtEEgAAC3QZQe4TE1NjTXw+/0tLS08mQTPIJBcIBAI2M9FCjt8F70q+dAaDCh214WnEEguoJSyvwexwzcAr2INCQCgBQIJAKAFAgkAoAUCCQCgBZoaABcLhULWwGoBd7YY4CkRSICLxZSvVKpFZEB11dfX80wSXI0pO8DFSqW6VFaUygqnCwFygEACAGiBQAIAaIFAAgBogUACAGjBlV126XS6v79/ZGRkampq586dTpeTF5m7qQLZiEaj0WjUGtMCDjdyZSC1tbWdO3du1apVg4ODXg2kUCg0oMacrgJu0hnuMmSFiJgyTAs43MiVU3bvv/9+X1/fO++843QheaSUWixvWP9zuha4g08aK6SxQhqdLgSYI1cGkmEYTpcAAMgxVwZS9mrus3dYAYDiEQqF7G+DTtfyeK5cQ8pePB53ugQAcExLS4vd4aJ/Jnn8DgkA4BYev0MCilMgELAG1i7gdNzBFVwZSOl0+u7du3fv3hUR0zSFNgfgQYtlj7Xj6oA67nQtQLZcGUjnzp1rbW21xmvXrhWRK1eukEkA4GquDKRt27Zt27bN6SoAALlEUwMAQAsEEgBACwQSAEALrlxDApC9zG1KIpGIg5UAs+MOCfC4mPINqTVDas2AGmMPLeiMOySNKKXs99kAuVIq1dYzSSlJOF0LMBsCSSOBQMDHuwMAFCsCSS/2y2wm5IKzlQBAgbGGBADQAoEEANACU3ZAEVFKKaWsMVuAQzcEElBEBtTYm4H3RCQliUgkQiZBK0zZAUXEkBWL5Y3F8oZPGnnGALohkAAAWiCQAABaIJAAAFogkAAAWiCQgCIVDodr7rN7wQEH0fYNFCmfNFpbVd2SC9FolBZwOI5AclgoFOKHUwAQAslx4XB4sey5f0QyASheBJLzrHfVAECRo6kBAKAFAgkAoAUCCQCgBQIJAM8kQQs0NQDgmSRogTskAIAWCCQAgBYIJACAFggkAIAWaGoA8ACllN1oR3cDColAAvCAATX2ZuA9a/zb5l+1tLQ4Ww+KB4HkAHb4hs4MWWG1gKdkmP+jopAIpEJTSnWGu3zSaJ9wshoA0AaB5Ax2+AaAh9BlBwDQAoEEANACgQQA0AJrSABmpJQKBALW2O/30wKOvCKQAMyoVKqH1BoRSUmCjlDkG4EEYDYZHaExJ+tAEWANCQCgBQIJAKAFAgkAoAUCCQCgBZoaAGSFFnDkG4EEICu0gCPfCKQCqampscelUu1cIcDc0QKOvCKQCkEpVSrVi+UNEUnJ8IRccLoiANAOTQ0AAC0QSAAALRBIAAAtsIYE4Ikppew+Hb/fH4lEnK0H3kAgAXhidpOOiCjV5mwx8Aym7AAAWiCQAABa0G7Kbmho6NSpU8lkcuvWrVu2bHnkNX19fYlEwj7cuHHj8uXLC1QfACA/9AqkeDz+6quv7t27d8mSJYcPHx4dHd29e/f0yz777DOlVG1trXW4cuVKAgkA3E6vQDpy5MiuXbuamppE5Nlnnw0Gg6+99tr8+fOnX+n3+9vb2wteIAAgX/QKpIsXL+7atcsaNzQ0pFKp3t7ehoaG6VdOTk729PQsWbJkzZo1ha0RwMPYBRw5oVEgJZPJqamp6upq63DevHnl5eU3b9585MXnz58fGRmJxWJVVVWdnZ327wJQeNYu4CKiVJhAwpxpFEj37t0TkcrKSvtMSUnJ3bt3p18ZDAat+TrTNFtbW5ubm7u6uh75Z9rP7jU3Nxf+c8IO3ygSGbuAQy+hUCgcDjtdRbY0CiTDMERkcHBww4YN1pk7d+6UlZVNv9IOLcMwmpqaduzYkUwmH3llPB7PW72PwQ7fABzX0tJi/yye+SOynjR6DskwjKVLl169etU6vHbtWjKZXL169ey/K5VKiUhJiUbJCgCYA40CSUS2b99+7NixyclJEeno6KitrbUWh86cOXPy5En7st7eXmtw/fr1cDi8bt066+4KAOBeet1YNDU1ffPNN36/v6KiYtGiRR0dHdb5/v7+iYkJ+5mk/fv3j4+PL1iwYGJioq6uzkUzpIDn0XGHOdMrkAzDeGS6fPTRR5mHX331VaEqAvBk6LjDnOkVSADcjo47zJlea0gAgKJFIAEAtEAgAQC0QCABALRAUwOAfLG3BvD7/ZFIxNlioD8CCUC+VMmH1kCpNmcrgSswZQcA0AJ3SDkWCoWUUk5XAQDuQyDlklKqM9zlk0YRSUnC6XIAwE0IpNyzn1Q3ZdjZSgB9ZM4c+P1+ByuBtggkAIXwZuA9a5CSRCQSIZMwHYEEoBCsl1WKyPdy3NlKoC267AAAWiCQAABaIJAAAFpgDQlAoUWj0Wg0ao15iR9sBBKAQusMdxmyQkRMGa6vr6fjDhYCCUCh+aTRelzve57VQwbWkAAAWiCQAABaIJAAAFpgDelpKaUCgYB9WCrVztUCuI/98fH7/S0tLTQ4FDMC6WlFo1GfNFb8d4fv4Qm54HRFgJsslj1Wg8OAYkuhYseUHQBACwQSAEALTNkB0EUoFLIG1nqSs8Wg8AgkALqIKZ/VFjSgutjBoQgxZQdAF6VSXSor7Hcuo9gQSAAALRBIAAAtsIYEQEeZz5tHIhHWk4oBgQRAR/YDs7fkQjQaJZCKAVN2AAAtcIcEQHdKKaWUNeZWycMIJAC6G1BjbwbeE5GUJFhP8jACaY7sn9cA5JshK6z9i1lP8jYCaS5CoVBnuMsapyThk0Zn6wEADyCQ5ijzRzanawGKSDgctucnIpGIs8Ugt+iyA+AmPmkcUmuG1JoBNWZvxgpv4A4JgMtYzyelJOF0IcgxAgmAW2VO3/HGCg8gkAC4lU8ah1S1/PduicZX1yOQALhYxrsqYk7WgVwgkAB4gVLK3o+V6TuXIpAAeEGpVA+pNcL0nZsRSAA8InP6jr3v3IhAAuA1Silr7zsR+W3zr5i+cwsCCYDXlEr1YnlDRFIyzLaTLkIgPQH7sXCllIjP2WIAZINmBxchkLJlbahqyAoRMWXM+N9sNQB90ezgIgTSE8jYUBWAa9jNDkr9H3dLOiOQABQL+25JRJQKE0i6IZAAFJGM1nCpqamxBn6/nzdZ6IBAAlCkquRDa6BUG88t6YBAAgCxn1tKSSIejztbTNEikABArOeWROTf0sZUnlMIJAB4QOZUHl15heTWQBoaGjp16lQymdy6deuWLVvy9xfxmDdQzOyuvAHVxcsA882VgRSPx1999dW9e/cuWbLk8OHDo6Oju3fvzsdfZD0Ma41TkvBJYz7+FgDasrvyJuRCTPlKpVoIp7xxZSAdOXJk165dTU1NIvLss88Gg8HXXntt/vz5Of+LlFI+abT+H3lLLuT8zwfgIqVSbX03eCicwuGwfU1zc3N9fb01pmHvSbkykC5evLhr1y5r3NDQkEqlent7GxoanK0KQPHIDKfFssf+sbUz3GVNq6QkkRlImWM7sYTQepD7AimZTE5NTVVXV1uH8+bNKy8vv3nz5vQr/X6/3S0zZz7xpSQhIqYMy/1Ngx43vpDl2PJE45QkDElYJc00fpJS81h2NqXmu+w8/Reea9n8F3bZf+EnLdv6K+yNLgfUmP17M1ejM++oCkn/8PvBvXv3nK7hydy+fbu2tvbvf/97eXm5dWbTpk0HDx789a9/nZM/XykVjUZz8kcBQOHV19frnz2P5L47JMMwRGRwcHDDhg3WmTt37pSVleXqz/f7/S79WgKAq81zuoAnZhjG0qVLr169ah1eu3YtmUyuXr3a2aoAAE/JfYEkItu3bz927Njk5KSIdHR01NbW2ktKAACXct+UnYg0NTV98803fr+/oqJi0aJFHR0dTlcEAHha7mtqAAB4kiun7AAA3kMgAQC04Mo1pMcq2NaryIm+vr5EImEfbty4cfny5c6Vg0dIp9P9/f0jIyNTU1M7d+7M/CU+bnqa6Uum88fNg4FUsK1XkSufffaZUqq2ttY6XLlypT6fEFja2trOnTu3atWqwcHBzO9ufNy0NdOXTOePmwebGt5+++2VK1ceOHBARLq7u4PB4KVLl/Kx9Spy5dChQyLS3t7udCGYkWmahmF0d3c3NzdfvnzZPs/HTVszfcl0/rh5cA3p4sWLmzZtssb21qvOloTHmpyc7OnpicViTheCR7N2SJmOj5u2ZvqSicYfN69N2WW/9Sq0cv78+ZGRkVgsVlVV1dnZyZPOrsDHzaW0/bh57Q7JmoGsrKy0z5SUlNy9e9e5ivB4wWBwYGDg9OnTfX19zz//fHNzs9MVISt83NxI54+b1wLJ3nrVPpPbrVeRD/Z3NMMwmpqahoaGksmksyUhG3zc3Ejnj5sHA4mtV10tlUqJSEmJ1yaTPYmPm9vp9nHzWiAJW6+6kL0Mfv369XA4vG7dulnWY+GIdDptmqY1HWeapmma1nk+btqa6Uum88fNg23fpmm2trb29PTYW68uW7bM6aIwm1/84hfj4+MLFiyYmJioq6v705/+VFVV5XRReMDZs2dbW1szz1y5csUwDD5u2prpS6bzx82DgWQZHx+/ceMGnw23ME3zypUra9eu1eeHNWSPj5u7aPtx82wgAQDcxYNrSAAANyKQAABaIJAAAFogkAAAWiCQAABaIJAAwMtu3759/fp1p6vIii47RgAAcmt8fLy1tXVsbOzHP/7xD3/4w7/85S9OV/QYPIcEAN504MCBZcuWabWf9+wIJADwINM06+rqotHopUuXfvKTn9TU1Dhd0eMxZQcAHvT1118bhrFnz55Vq1bFYrH169d/+OGHThf1GAQSALhAOp3u7+8fGRmZmprauXNn5i8NDQ2dOnUqmUxu3bp1y5Yt1slUKjUxMfHuu++uX79+cnLyxRdfDAQCP/3pT52oPVt02QGAC7S1te3du/f06dMffPBB5vl4PP7KK69UVVXV1dUdPnz45MmT1vkXXnhBRNauXSsizzzzzAsvvPDdd98VvOonwxoSALiAaZqGYXR3dzc3N1++fNk+//bbb69cufLAgQMi0t3dHQwGL126NH/+fBHZsWNHMBh86aWX/vOf/7z00ktffPHFc88959g/IAvcIQGA89Lp9D//+c/MM6Ojo7du3bIPZ3pVxMWLFzdt2mSNGxoaUqmU/Qq+P/7xj3/4wx/eeeedV1555d1339U8jYQ1JADQwbx58z7//PPNmzevX79eREZHRyORiHXfM4tkMjk1NWW/pXfevHnl5eU3b960DlevXv3FF1/cvn37mWeese6ZNEcgAYAWgsHgxx9/LCKVlZXZpJGIWGsulZWV9pmSkhLrteW28vLyXFeaL0zZAYAugsHg2bNnjx49mk0ayf15vMHBQfvMnTt3ysrK8lVfnhFIAKCLRCKRTqeXL1/+9ddfZ3O9YRhLly69evWqdXjt2rVkMrl69ep81phHBBIAaCGRSJw6dergwYNvvfVWb2/vQ5mUTqdN07Sm40zTNE3TOr99+/Zjx45NTk6KSEdHR21trb2k5Dq0fQOA89Lp9JEjR/bt22efOXr06Ouvv75w4ULr8OzZs62trZm/5cqVK4ZhmKbZ2tra09NTUVGxaNGijo6OZcuWFbT03CGQAMD1xsfHb9y44d4oshBIAAAtsIYEANACgQQA0AKBBADQAoEEANDC/wMCRa1JaRbCzAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%number of simulation\n", "n=10000000\n", "\n", "%Firstly, we will construct individual probability distributions \n", "\n", "%probability distribution (pd) of Volume\n", "V_pd = makedist('Triangular','A',10000,'B',40000,'C',100000);\n", "\n", "%probability distribution (pd) of Price\n", "p_pd = makedist('Triangular','A',100,'B',110,'C',150);\n", "\n", "%probability distribution (pd) of Fixed cost\n", "fc_pd = makedist('Triangular','A',140000,'B',300000,'C',420000);\n", "\n", "%probability distribution (pd) of variable cost\n", "vc_pd = makedist('Triangular','A',10,'B',30,'C',105);\n", "\n", "%to obtain n random values of volume, we will use\n", "V=random(V_pd,1,n);\n", "\n", "%similar approach will be applied on remaining variables\n", "p=random(p_pd,1,n);\n", "fc=random(fc_pd,1,n);\n", "vc=random(vc_pd,1,n);\n", "\n", "%we will apply the whole formula to obtain n possible results\n", "P=p.*(V-vc)-fc;\n", "\n", "%and we will plot the results\n", "hist(P,100)\n", "xlim([0,15000000]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Lets make a deeper look into the computation. What will happen, if we do only one simulation? " ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "n =\n", "\n", " 1\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAB3RJTUUH5gIGFAgeepviRAAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAwNi1GZWItMjAyMiAyMjowODozMEXQ8BAAAB6fSURBVHic7d1rbFv1+cDxXx0fWpuMVB1uQqaqWRuwtBaoo2AyaNYNJbvwoihtVKRkjcYEokbxrAi2alBBU3WTxpgRcwRzlyEtVZjCpcAuqCqXKkoUaVUxdGktOWZQxBJvWLBSzznxNf8XR1j959IW8OWx+X5enXP4JXqsyP7mXBpWzM/PKwAASs1U6gEAAFCKIAEAhCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABDBXOoBPo9sNhsIBKanp9Pp9M6dO0s9DgAgD1bMz8+XeobPbN++fUePHt24cWMwGJycnCz1OACAPCjLIKVSKU3TRkdHe3t7CRIAVIayvIekaVqpRwAA5FlZBgkAUHnK8qGGy7R79+4TJ06UegoAEMHpdB4+fLjUU1xMJQfpxIkToVCo1FMUhN1ur7yXVpEvqrLxIysvdru91CNcApfsAAAilOUZUjabzWQymUxGKZVKpRSPOQBA+SvLIB09erSvr8/Y3rx5s1Lq9OnTNKnc9fb2lnoEfDb8yJBfZfnvkC5TBV/gruCXBqBA5H9ucA8JACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACKYSz3AQuFweHh4WNf19vb2tra25ZYdP3786NGjVVVVO3bsaG5uLuaEAIBCkHWGFAqFOjs7a2trm5qa+vv7h4aGllw2MDCwb9++LVu2fOMb3/jJT37y8ssvF3lOAEDeyTpD8nq9XV1dLpdLKVVXV+fxeLq7u6uqqi5ck8lknnrqqSeeeMI4f6qpqXn00UfvuOOO0kwMAMgTWWdI4+PjLS0txnZra2symZyYmFiwJhgMptPpW265xdhtaWn58MMPT506VdRBAQD5JihIuq6n0+mGhgZj12QyWa3WWCy2YNl1112nlDp9+rSxOzk5qZT66KOPijcoAKAABAVpfn5eKWWz2XJHzGZzJpNZsGzlypXbt28/cODA8ePH33jjjccee8xsNmez2SW/p/1TPp+vcJMDgEw+ny/3MVjqWS5N0D0kTdOUUsFgMPfU3NzcnMViWbzyl7/85eDg4LPPPqtp2oEDB3p6eoyvXSwUChVuYAAQzu12u91uY1t+k2QFqb6+PhKJGLvRaFTX9cbGxiVXGg8+KKUmJiY0Tdu6dWvxBgUAFICgS3ZKqY6OjsHBwUQioZTy+/0Oh8O4pTQyMnLhI+DvvvuucY1uZmbm4MGD99xzz4In8QAAZUfQGZJSyuVyTU1NOZ3O6urqmpoav99vHA8EAvF4vKenx9h94YUXhoaGVq1aNTs7+6Mf/ai3t7d0IwMA8mOF8ShBRbLb7ZV6D6mCXxqAApH/uSHrkh0A4EuLIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABHOpB1goHA4PDw/rut7e3t7W1rbcsuPHjx87diydTl9//fV33nnnypUrizkkACDvZJ0hhUKhzs7O2trapqam/v7+oaGhJZf5/f6HHnpo06ZN3/rWt1544YW77767yHMCAPJO1hmS1+vt6upyuVxKqbq6Oo/H093dXVVVtWDZyMhIb29vV1eXUmrTpk0/+MEPZmdnrVZrCSYGAOSJrDOk8fHxlpYWY7u1tTWZTE5MTCxeVl9fH4/HjW1d181mM5fsAKDcCTpD0nU9nU43NDQYuyaTyWq1xmKxxSv379//85///N1339U0bXJy8le/+tXisyiD3W43Nnp7e91ud2EGBwChfD7fwMBAqae4XIKCND8/r5Sy2Wy5I2azOZPJLF4ZiUQ++eQTpdSVV16p6/r09PRy3zMUChVgUgAoD263O/e7eO4XdLEEBUnTNKVUMBhsbm42jszNzVkslgXLstmsx+N55JFH7rjjDqXUj3/8423btm3dunXTpk1FHhgAkEeC7iFpmlZfXx+JRIzdaDSq63pjY+OCZYlEIh6PX3PNNcauzWa74oorPvjgg6LOCgDIN0FBUkp1dHQMDg4mEgmllN/vdzgcxi2lkZGR3CPgFoulrq7u2LFjxu7o6Kiu69ddd12JRgYA5IegS3ZKKZfLNTU15XQ6q6ura2pq/H6/cTwQCMTj8Z6eHmP38ccfv//++48cObJ69eqPPvrokUce2bBhQ+mmBgDkwQrjUYKKZLfbK/Whhgp+aQAKRP7nhqxLdgCALy2CBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARDCXeoCFwuHw8PCwruvt7e1tbW1LrnnxxRczmcyFR+644w5N04oyIACgIGQFKRQK7dq1a8+ePWvWrOnv75+Zmenp6Vm87K233kokEsb2+++/PzU11dHRUdxJAQB5JitIXq+3q6vL5XIpperq6jweT3d3d1VV1YJlBw4cyG3fe++9O3bsWLwGAFBeZN1DGh8fb2lpMbZbW1uTyeTExMRF1kej0bGxMU6PAKACCAqSruvpdLqhocHYNZlMVqs1Fotd5Euef/75jRs3btq0abkF9k/5fL78TgsA8vl8vtzHYKlnuTRBl+zm5+eVUjabLXfEbDYveHhhgRdeeGHJm0w5oVAoX+MBQNlxu91ut9vYlt8kQWdIxmNywWAwd2Rubs5isSy3/sSJE5FIZPv27cUYDgBQYLKCVF9fH4lEjN1oNKrremNj43LrX3zxxe9973urV68u1oAAgAISFCSlVEdHx+DgoPFIt9/vdzgcxi2lkZGRoaGhC1fOzs7++c9/7uzsLMmcAIC8E3QPSSnlcrmmpqacTmd1dXVNTY3f7zeOBwKBeDx+4e2iI0eOXH311bfcckuJJgUA5NkK41GCimS32yv1oYYKfmkACkT+54asS3YAgC8tggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQwl3qAhcLh8PDwsK7r7e3tbW1tyy3LZDLPPvvs22+/rWnabbfddttttxVzSABA3sk6QwqFQp2dnbW1tU1NTf39/UNDQ0suS6VS3d3dR44cuf7669evX//yyy8XeU4AQN7JOkPyer1dXV0ul0spVVdX5/F4uru7q6qqFiz7/e9/n0wmn3/+eZNJVlABAJ+brA/08fHxlpYWY7u1tTWZTE5MTCxeduTIkd27d0ej0bGxsXPnzhV3RgBAQQgKkq7r6XS6oaHB2DWZTFarNRaLLViWyWQ++OCDY8eO7dq16+mnn7711lv/8Ic/FHtWAEC+CbpkNz8/r5Sy2Wy5I2azOZPJLFiWzWaVUv/+979fe+01TdNOnjzZ3d39ne98Z8OGDYu/p91uNzZ6e3vdbnehRgcAkXw+38DAQKmnuFyCgqRpmlIqGAw2NzcbR+bm5iwWy4JlVVVVVVVVO3fuNNY3NzdfddVVZ86cWTJIoVCowFMDgFxutzv3u3juF3SxBF2y0zStvr4+EokYu9FoVNf1xsbGBctMJtPGjRsvPHMyTq0AAGVNUJCUUh0dHYODg4lEQinl9/sdDodxS2lkZOTCR8B37Njx3HPPzc7OKqWOHz8+Ozu7ZcuWEo0MAMgPQZfslFIul2tqasrpdFZXV9fU1Pj9fuN4IBCIx+M9PT3G7l133TU1NfXNb35z9erVsVjsscceW7duXemmBgDkwYoKvt5lt9sr9R5SBb80AAUi/3ND1iU7AMCXFkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAjmUg+wUDgcHh4e1nW9vb29ra1tyTUnT548e/Zsbvemm25av359keYDABSGrCCFQqFdu3bt2bNnzZo1/f39MzMzPT09i5e99NJLJ06ccDgcxu6GDRsIEgCUO1lB8nq9XV1dLpdLKVVXV+fxeLq7u6uqqhavdDqdBw8eLPqAAIBCkXUPaXx8vKWlxdhubW1NJpMTExNLrkwkEmNjY2fOnCnidACAAhJ0hqTrejqdbmhoMHZNJpPVao3FYksufvXVV6enp8+cOVNbW3vo0KHcVy1gt9uNjd7eXrfbnf+hAUAwn883MDBQ6ikul6Agzc/PK6VsNlvuiNlszmQyi1d6PB7jel0qlerr6+vt7f3rX/+65PcMhUKFGRYAyoDb7c79Lp77BV0sQZfsNE1TSgWDwdyRubk5i8WyeGUuWpqmuVyucDis63pxhgQAFIisINXX10ciEWM3Go3qut7Y2Hjxr0omk0ops1nQqR4A4HMQFCSlVEdHx+DgYCKRUEr5/X6Hw2HcHBoZGRkaGsotyz3pcO7cuYGBgRtuuME4uwIAlC9ZJxYul2tqasrpdFZXV9fU1Pj9fuN4IBCIx+O5f5P005/+9Pz586tWrYrH401NTWV0yw4AsJwVxqMEFclut1fqQw0V/NIAFIj8zw1Zl+wAAF9aBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhgLvUAC4XD4eHhYV3X29vb29raLr44EAi8++6727Zts9lsxRkPAFAgss6QQqFQZ2dnbW1tU1NTf3//0NDQRRZHo9Gf/exnDz300Pvvv1+0CQEABSIrSF6vt6ury+Vy3XnnnQcPHvR6vZlMZrnF+/btc7vdxRwPAFA4soI0Pj7e0tJibLe2tiaTyYmJiSVX/uUvf1FK3X777cUbDgBQSILuIem6nk6nGxoajF2TyWS1WmOx2OKVH3/88eOPP/6nP/3pkt/TbrcbG729vZxOAfiy8fl8AwMDpZ7icgkK0vz8vFLqwscTzGbzkpfs+vv777777tra2lQqdfHvGQqF8jskAJQRt9ud+1089wu6WIIu2WmappQKBoO5I3NzcxaLZcGyEydOnDx58mtf+9ro6OjY2JhS6q233nrnnXeKOSoAIO8EnSFpmlZfXx+JRIzdaDSq63pjY+OCZSaTafPmzc8884xSKpvNKqVef/31K6+8cvFKAEAZERQkpVRHR8fg4OB3v/vdlStX+v1+h8Nh3FIaGRlJJBI9PT1Kqebm5ubmZmN9KpXavHnzAw88kDsCAChTsoLkcrmmpqacTmd1dXVNTY3f7zeOBwKBeDxuBAkAUJFWGI8SVCS73V6pDzVU8EsDUCDyPzcEPdQAAPgyI0gAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEc6kHWCgcDg8PD+u63t7e3tbWtuSaU6dOvfHGGzMzM2azedu2bd///veLPCQAIO9knSGFQqHOzs7a2tqmpqb+/v6hoaEll73xxhv//e9/b7755rVr1x44cODgwYNFnhMAkHeyzpC8Xm9XV5fL5VJK1dXVeTye7u7uqqqqBcv6+vpy29dee+3evXv37dtX1EEBAPkm6wxpfHy8paXF2G5tbU0mkxMTExf/kng8vnbt2sKPBgAoLEFnSLqup9PphoYGY9dkMlmt1lgstuTiycnJkZGRWCz2wQcfeL3e4k0JACgMQWdI8/PzSimbzZY7YjabM5nMkotXr169ZcuWtWvX/uc///nHP/6x3Pe0f8rn8+V9YAAQzufz5T4GSz3LpQk6Q9I0TSkVDAabm5uNI3NzcxaLZcnF69atW7dunVJq+/btnZ2dt99++4UlywmFQgWbFwCkc7vdbrfb2JbfJEFnSJqm1dfXRyIRYzcajeq63tjYePGvMha89957BZ8PAFBIgoKklOro6BgcHEwkEkopv9/vcDiMW0ojIyMXPgKee9Ihk8n8+te/vvrqq3MnVQCAMiXokp1SyuVyTU1NOZ3O6urqmpoav99vHA8EAvF4vKenx9jdv39/JBJZtWrV7Ozs17/+9d/97ncmk6yyAgA+qxXGowQVyW63V+o9pAp+aQAKRP7nBicWAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABDBXOoBFgqHw8PDw7qut7e3t7W1Lbfm1Vdffe+996688srt27c3NTUVeUgAQN7JOkMKhUKdnZ21tbVNTU39/f1DQ0NLLuvq6nrvvfduvvlmTdN279794osvFnlOAEDeyTpD8nq9XV1dLpdLKVVXV+fxeLq7u6uqqhYse/3116+66ipju6am5qmnnuro6Cj2rACAvJJ1hjQ+Pt7S0mJst7a2JpPJiYmJxctyNVJK2Wy2VCpVpPkAAAUjKEi6rqfT6YaGBmPXZDJZrdZYLHaRL0mlUocPH965c2cx5gMAFJKgIM3PzyulbDZb7ojZbM5kMhf5kvvvv/+rX/2qcYlvSfZP+Xy+PI4KAGXB5/PlPgZLPculCbqHpGmaUioYDDY3NxtH5ubmLBbLcusfeOCBDz/88Omnn158kyknFArlfU4AKBdut9vtdhvb8pskK0j19fWRSMTYjUajuq43NjYuuXjv3r3//Oc///jHP1qt1iLOCAAoFEGX7JRSHR0dg4ODiURCKeX3+x0Oh3FLaWRk5MJHwPft2zc5OXno0CGLxZJKpXioAQAqgKAzJKWUy+WamppyOp3V1dU1NTV+v984HggE4vF4T0+Psfvcc88ppbZu3WrsXnHFFZOTkyUZGACQLyuMRwkqkt1ur9R7SBX80gAUiPzPDVmX7AAAX1oECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAimEs9wELhcHh4eFjX9fb29ra2tiXXZLPZQCAwPT2dTqd37txZ5AkBAIUgK0ihUGjXrl179uxZs2ZNf3//zMxMT0/P4mUPP/zw0aNHN27cGAwGCRIAVAZZl+y8Xm9XV5fL5brzzjsPHjzo9XozmcziZY888sjJkyfvu+++4k8IACgQWUEaHx9vaWkxtltbW5PJ5MTExOJlmqYVdy4AQMEJCpKu6+l0uqGhwdg1mUxWqzUWi32R72n/lM/ny8OIAFBWfD5f7mOw1LNcmqB7SPPz80opm82WO2I2m5e8ZHf5QqHQFx0LAMqW2+12u93GtvwmCTpDMi7EBYPB3JG5uTmLxVK6iQAAxSMrSPX19ZFIxNiNRqO6rjc2NpZ2KgBAcQgKklKqo6NjcHAwkUgopfx+v8PhMG4pjYyMDA0N5ZZls9lUKmVczUulUqlUqkTzAgDyRtA9JKWUy+WamppyOp3V1dU1NTV+v984HggE4vF47t8kHT16tK+vz9jevHmzUur06dM8egcAZW2F8ShBRbLb7ZX6UEMFvzQABSL/c0PWJTsAwJcWQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACKUa5DC4fD+/fv37t372muvlXoW5IfP5yv1CPhs+JEhv8oySKFQqLOzs7a2tqmpqb+/f2hoqNQTIQ8GBgZKPQI+G35kyC9zqQf4PLxeb1dXl8vlUkrV1dV5PJ7u7u6qqqpSzwUA+PzK8gxpfHy8paXF2G5tbU0mkxMTE6UdCQDwBZXfGZKu6+l0uqGhwdg1mUxWqzUWiy1e6XQ67XZ7UYcroop8aRX5oiobP7Iy4nQ6Sz3CJZRfkObn55VSNpstd8RsNmcymcUrDx8+XLyxAABfTPldstM0TSkVDAZzR+bm5iwWS+kmAgDkQVkGqb6+PhKJGLvRaFTX9cbGxtJOBQD4gsovSEqpjo6OwcHBRCKhlPL7/Q6HI3dLCQBQpsrvHpJSyuVyTU1NOZ3O6urqmpoav99f6okAAF/UCuMZAQAASqssL9kBACoPQQIAiFCW95AuKRwODw8P67re3t7e1tZW6nFwCSdPnjx79mxu96abblq/fn3pxsESstlsIBCYnp5Op9M7d+688D/xdpNpuR+Z5LdbBQYpFArt2rVrz549a9as6e/vn5mZ6enpKfVQuJiXXnrpxIkTDofD2N2wYYOcdwgMDz/88NGjRzdu3BgMBi/8dOPtJtZyPzLJb7cKfKjh3nvv3bBhw969e5VSo6OjHo/nzTff5E+vSrZv3z6l1MGDB0s9CJaVSqU0TRsdHe3t7Z2cnMwd5+0m1nI/Mslvtwq8h8SfXi1HiURibGzszJkzpR4ESzP+QspivN3EWu5HpgS/3Srtkt3l/+lViPLqq69OT0+fOXOmtrb20KFD/EvnssDbrUyJfbtV2hnS5f/pVcjh8XjefvvtZ5555uTJk9ddd11vb2+pJ8Jl4e1WjiS/3SotSPzp1XKU+0TTNM3lcoXDYV3XSzsSLgdvt3Ik+e1WgUHiT6+WtWQyqZQymyvtYnJF4u1W7qS93SotSIo/vVqGcrfBz507NzAwcMMNN1zkfixKIpvNplIp43JcKpVKpVLGcd5uYi33I5P8dqvAx75TqVRfX9/Y2FjuT6+uW7eu1EPhYm699dbz58+vWrUqHo83NTX95je/qa2tLfVQ+H9eeeWVvr6+C4+cPn1a0zTebmIt9yOT/HarwCAZzp8//8knn/DeKBepVOr06dObN2+W88saLh9vt/Ii9u1WsUECAJSXCryHBAAoRwQJACACQQIAiECQAAAiECQAgAgECQAq2ezs7Llz50o9xWWR8hcjAAD5df78+b6+vg8//PDqq6/+yle+8tvf/rbUE10C/w4JACrT3r17161bJ+rveV8cQQKACpRKpZqamv7+97+/+eaba9eutdvtpZ7o0rhkBwAV6NSpU5qm3XXXXRs3bjxz5syNN9544MCBUg91CQQJAMpANpsNBALT09PpdHrnzp0X/qdwODw8PKzrent7e1tbm3EwmUzG4/EHH3zwxhtvTCQSW7du3b1797XXXluK2S8XT9kBQBl4+OGH9+zZ88wzz+zfv//C46FQqLOzs7a2tqmpqb+/f2hoyDi+ZcsWpdTmzZuVUitXrtyyZcu//vWvok/92XAPCQDKQCqV0jRtdHS0t7d3cnIyd/zee+/dsGHD3r17lVKjo6Mej+fNN9+sqqpSSu3YscPj8Wzbtu3jjz/etm3bsWPHrrnmmpK9gMvAGRIAlF42m33nnXcuPDIzM/O///0vt7vc/ypifHy8paXF2G5tbU0mk7n/Bd+jjz76i1/84r777uvs7HzwwQeF10hxDwkAJDCZTH/729++/e1v33jjjUqpmZmZw4cPG+c9F6Hrejqdzv1fek0mk9VqjcVixm5jY+OxY8dmZ2dXrlxpnDMJR5AAQASPx/PEE08opWw22+XUSCll3HOx2Wy5I2az2fjfludYrdZ8T1ooXLIDACk8Hs8rr7zy5JNPXk6N1KfX8YLBYO7I3NycxWIp1HwFRpAAQIqzZ89ms9n169efOnXqctZrmlZfXx+JRIzdaDSq63pjY2MhZywgggQAIpw9e3Z4ePihhx665557JiYmFjQpm82mUinjclwqlUqlUsbxjo6OwcHBRCKhlPL7/Q6HI3dLqezw2DcAlF42m/V6vQ888EDuyJNPPvnDH/7wqquuMnZfeeWVvr6+C7/k9OnTmqalUqm+vr6xsbHq6uqamhq/379u3bqijp4/BAkAyt758+c/+eST8k2RgSABAETgHhIAQASCBAAQgSABAEQgSAAAEf4PZAkN+oPHuvEAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n=1\n", "\n", "%to obtain n random values of volume, we will use\n", "V=random(V_pd,1,n);\n", "\n", "%similar approach will be applied on remaining variables\n", "p=random(p_pd,1,n);\n", "fc=random(fc_pd,1,n);\n", "vc=random(vc_pd,1,n);\n", "\n", "%we will apply the whole formula to obtain n possible results\n", "P=p.*(V-vc)-fc;\n", "\n", "%and we will plot the results\n", "hist(P,100)\n", "xlim([0,15000000]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And again" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAB3RJTUUH5gIGFAkmS4JrmwAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAwNi1GZWItMjAyMiAyMjowOTozOPO3H0cAAB7BSURBVHic7d1rbFv1+cDxH44PbUyGqw43IVPVrA1YWgvUUTAZNOuGkl36oihtVKRkjcYEokbxrAi2alBBU3WTypgRcwQzy5CWKkzhUmAXVJVLFSWLtKoYurSWHDMoYok3LFip55z4mv+LI6z8c2kL+PI4/X5enXP2S/RM1sk359JwxezsrAIAoNRMpR4AAAClCBIAQAiCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARzKUe4IvIZrOBQGBycjKdTu/cubPU4wAA8uCK2dnZUs/wue3bt+/o0aMbNmwIBoPj4+OlHgcAkAdlGaRUKqVp2vDwcHd3N0ECgOWhLJ8haZpW6hEAAHlWlkECACw/ZflSwyXavXv3iRMnSj0FAIjgdDoPHz5c6ikuZDkH6cSJE6FQqNRT4FLZ7fYy+rx8Pp9Syu12l3qQUiqvjwx2u73UI1wEt+wAACKU5RVSNpvNZDKZTEYplUqlFK85AED5K8sgHT16tKenx9jetGmTUur06dM0qdx1d3eXegR8PnxkyK+yDNK2bdu2bdtW6imQZ5f585hyxEeG/OIZEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEMJd6gPnC4fDg4KCu662trS0tLUstO378+NGjRysqKnbs2NHY2FjMCQEAhSDrCikUCrW3t1dXVzc0NPT29g4MDCy6rK+vb9++fZs3b/7GN77xk5/85JVXXinynACAvJN1heT1ejs6Olwul1KqpqbG4/F0dnZWVFTMXZPJZJ566qknnnjCuH6yWq2PPvroHXfcUZqJAQB5IusKaXR0tKmpydhubm5OJpNjY2Pz1gSDwXQ6feuttxq7TU1NH3300alTp4o6KAAg3wQFSdf1dDpdV1dn7JpMJovFEovF5i27/vrrlVKnT582dsfHx5VSH3/8cfEGBQAUgKAgzc7OKqVsNlvuiNlszmQy85atWLFi+/btBw4cOH78+JtvvvnYY4+ZzeZsNrvo97R/xufzFW5yAJDJ5/PlfgyWepaLE/QMSdM0pVQwGMy9NTczM1NZWblw5S9/+cv+/v7nnntO07QDBw50dXUZX7tQKBQq3MAAIJzb7Xa73ca2/CbJClJtbW0kEjF2o9Goruv19fWLrjRefFBKjY2NaZq2ZcuW4g0KACgAQbfslFJtbW39/f2JREIp5ff7HQ6H8UhpaGho7ivg7733nnGPbmpq6uDBg/fcc8+8N/EAAGVH0BWSUsrlck1MTDidzqqqKqvV6vf7jeOBQCAej3d1dRm7L7744sDAwMqVK6enp3/0ox91d3eXbmQAQH5cYbxKsCzZ7XaeIaFAjNdkcnfnAfnk/0iUdcsOAHDZIkgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEMFc6gHmC4fDg4ODuq63tra2tLQstez48ePHjh1Lp9M33HDDnXfeuWLFimIOCQDIO1lXSKFQqL29vbq6uqGhobe3d2BgYNFlfr//oYce2rhx47e+9a0XX3zx7rvvLvKcAIC8k3WF5PV6Ozo6XC6XUqqmpsbj8XR2dlZUVMxbNjQ01N3d3dHRoZTauHHjD37wg+npaYvFUoKJAQB5IusKaXR0tKmpydhubm5OJpNjY2MLl9XW1sbjcWNb13Wz2cwtOwAod4KukHRdT6fTdXV1xq7JZLJYLLFYbOHK/fv3//znP3/vvfc0TRsfHz906NDCqyiD3W43Nrq7u91ud2EGBwChfD5fX19fqae4VIKCNDs7q5Sy2Wy5I2azOZPJLFwZiUQ+/fRTpdRVV12l6/rk5ORS3zMUChVgUgAoD263O/e7eO4XdLEEBUnTNKVUMBhsbGw0jszMzFRWVs5bls1mPR7PI488cscddyilfvzjH2/dunXLli0bN24s8sAAgDwS9AxJ07Ta2tpIJGLsRqNRXdfr6+vnLUskEvF4/NprrzV2bTbblVde+eGHHxZ1VgBAvgkKklKqra2tv78/kUgopfx+v8PhMB4pDQ0N5V4Br6ysrKmpOXbsmLE7PDys6/r1119fopEBAPkh6JadUsrlck1MTDidzqqqKqvV6vf7jeOBQCAej3d1dRm7jz/++P3333/kyJFVq1Z9/PHHjzzyyPr160s3NQAgD2QFSdO0RV8IOXTo0NzdhoaG48ePF2soAEAxyLplBwC4bBEkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAggrnUA8wXDocHBwd1XW9tbW1paVl0zUsvvZTJZOYeueOOOzRNK8qAAICCkBWkUCi0a9euPXv2rF69ure3d2pqqqura+Gyt99+O5FIGNsffPDBxMREW1tbcScFAOSZrCB5vd6Ojg6Xy6WUqqmp8Xg8nZ2dFRUV85YdOHAgt33vvffu2LFj4RoAQHmR9QxpdHS0qanJ2G5ubk4mk2NjYxdYH41GR0ZGuDwCgGVAUJB0XU+n03V1dcauyWSyWCyxWOwCX/LCCy9s2LBh48aNSy2wf8bn8+V3WgCQz+fz5X4MlnqWixN0y252dlYpZbPZckfMZvO8lxfmefHFFxd9yJQTCoXyNR4AlB232+12u41t+U0SdIVkvCYXDAZzR2ZmZiorK5daf+LEiUgksn379mIMBwAoMFlBqq2tjUQixm40GtV1vb6+fqn1L7300ve+971Vq1YVa0AAQAEJCpJSqq2trb+/33il2+/3OxwO45HS0NDQwMDA3JXT09N/+tOf2tvbSzInACDvBD1DUkq5XK6JiQmn01lVVWW1Wv1+v3E8EAjE4/G5j4uOHDlyzTXX3HrrrSWaFACQZ1cYrxIsS3a7nZcaUCDGe5u5x8WAfPJ/JMq6ZQcAuGwRJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIIK51APMFw6HBwcHdV1vbW1taWlZalkmk3nuuefeeecdTdNuv/3222+/vZhDAgDyTtYVUigUam9vr66ubmho6O3tHRgYWHRZKpXq7Ow8cuTIDTfcsG7duldeeaXIcwIA8k7WFZLX6+3o6HC5XEqpmpoaj8fT2dlZUVExb9nvfve7ZDL5wgsvmEyyggoA+MJk/UAfHR1tamoytpubm5PJ5NjY2MJlR44c2b17dzQaHRkZOXfuXHFnBAAUhKAg6bqeTqfr6uqMXZPJZLFYYrHYvGWZTObDDz88duzYrl27nnnmmdtuu+33v/99sWcFAOSboFt2s7OzSimbzZY7YjabM5nMvGXZbFYp9e9///v111/XNO3kyZOdnZ3f+c531q9fv/B72u12Y6O7u9vtdhdqdAAQyefz9fX1lXqKSyUoSJqmKaWCwWBjY6NxZGZmprKyct6yioqKioqKnTt3GusbGxuvvvrqM2fOLBqkUChU4KkBQC632537XTz3C7pYgm7ZaZpWW1sbiUSM3Wg0qut6fX39vGUmk2nDhg1zr5yMSysAQFkTFCSlVFtbW39/fyKRUEr5/X6Hw2E8UhoaGpr7CviOHTuef/756elppdTx48enp6c3b95copEBAPkh6JadUsrlck1MTDidzqqqKqvV6vf7jeOBQCAej3d1dRm7d91118TExDe/+c1Vq1bFYrHHHnts7dq1pZsaAJAHVyzj+112u51nSCgQn8+nlOJNGZQR+T8SZd2yAwBctggSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQwl3qA+cLh8ODgoK7rra2tLS0ti645efLk2bNnc7s333zzunXrijQfAKAwZAUpFArt2rVrz549q1ev7u3tnZqa6urqWrjs5ZdfPnHihMPhMHbXr19PkACg3MkKktfr7ejocLlcSqmamhqPx9PZ2VlRUbFwpdPpPHjwYNEHBAAUiqxnSKOjo01NTcZ2c3NzMpkcGxtbdGUikRgZGTlz5kwRpwMAFJCgKyRd19PpdF1dnbFrMpksFkssFlt08WuvvTY5OXnmzJnq6uqnn34691Xz2O12Y6O7u9vtdud/aAAQzOfz9fX1lXqKSyUoSLOzs0opm82WO2I2mzOZzMKVHo/HuF+XSqV6enq6u7v/8pe/LPo9Q6FQYYYFgDLgdrtzv4vnfkEXS9AtO03TlFLBYDB3ZGZmprKycuHKXLQ0TXO5XOFwWNf14gwJACgQWUGqra2NRCLGbjQa1XW9vr7+wl+VTCaVUmazoEs9AMAXIChISqm2trb+/v5EIqGU8vv9DofDeDg0NDQ0MDCQW5Z70+HcuXN9fX033nijcXUFAChfsi4sXC7XxMSE0+msqqqyWq1+v984HggE4vF47t8k/fSnPz1//vzKlSvj8XhDQ0MZPbIDACxFVpA0TVu0LocOHZq7+7e//a1YEwEAikTWLTsAwGWLIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABHMpR5gvnA4PDg4qOt6a2trS0vLhRcHAoH33ntv69atNputOOMBAApE1hVSKBRqb2+vrq5uaGjo7e0dGBi4wOJoNPqzn/3soYce+uCDD4o2IQCgQGQFyev1dnR0uFyuO++88+DBg16vN5PJLLV43759bre7mOMBAApHVpBGR0ebmpqM7ebm5mQyOTY2tujKP//5z0qpbdu2FW84AEAhCXqGpOt6Op2uq6szdk0mk8ViicViC1d+8sknjz/++B//+MeLfk+73W5sdHd3czkF4HLj8/n6+vpKPcWlEhSk2dlZpdTc1xPMZvOit+x6e3vvvvvu6urqVCp14e8ZCoXyOyQAlBG32537XTz3C7pYgm7ZaZqmlAoGg7kjMzMzlZWV85adOHHi5MmTX/va14aHh0dGRpRSb7/99rvvvlvMUQEAeSfoCknTtNra2kgkYuxGo1Fd1+vr6+ctM5lMmzZtevbZZ5VS2WxWKfXGG29cddVVC1cCAMqIoCAppdra2vr7+7/73e+uWLHC7/c7HA7jkdLQ0FAikejq6lJKNTY2NjY2GutTqdSmTZseeOCB3BEAQJmSFSSXyzUxMeF0OquqqqxWq9/vN44HAoF4PG4ECQCwLMkKkqZpi74QcujQoaXW89oCACwPgl5qAABczggSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQwVzqAeYLh8ODg4O6rre2tra0tCy65tSpU2+++ebU1JTZbN66dev3v//9Ig8JAMg7WVdIoVCovb29urq6oaGht7d3YGBg0WVvvvnmf//731tuuWXNmjUHDhw4ePBgkecEAOSdrCskr9fb0dHhcrmUUjU1NR6Pp7Ozs6KiYt6ynp6e3PZ11123d+/effv2FXVQAEC+ybpCGh0dbWpqMrabm5uTyeTY2NiFvyQej69Zs6bwowEACkvQFZKu6+l0uq6uztg1mUwWiyUWiy26eHx8fGhoKBaLffjhh16vt3hTAgAKQ9AV0uzsrFLKZrPljpjN5kwms+jiVatWbd68ec2aNf/5z3/+8Y9/LPU97Z/x+Xx5HxgAhPP5fLkfg6We5eIEXSFpmqaUCgaDjY2NxpGZmZnKyspFF69du3bt2rVKqe3bt7e3t2/btm1uyXJCoVDB5gUA6dxut9vtNrblN0nQFZKmabW1tZFIxNiNRqO6rtfX11/4q4wF77//fsHnAwAUkqAgKaXa2tr6+/sTiYRSyu/3OxwO45HS0NDQ3FfAc286ZDKZX/3qV9dcc03uogoAUKYE3bJTSrlcromJCafTWVVVZbVa/X6/cTwQCMTj8a6uLmN3//79kUhk5cqV09PTX//613/729+aTLLKCgD4vGQFSdO0vr6+hccPHTo0d/fYsWPFmggAUCRcWAAARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABHOpB5gvHA4PDg7qut7a2trS0rLUmtdee+3999+/6qqrtm/f3tDQUOQhAQB5J+sKKRQKtbe3V1dXNzQ09Pb2DgwMLLqso6Pj/fffv+WWWzRN271790svvVTkOQEAeSfrCsnr9XZ0dLhcLqVUTU2Nx+Pp7OysqKiYt+yNN964+uqrjW2r1frUU0+1tbUVe1YAQF7JukIaHR1tamoytpubm5PJ5NjY2MJluRoppWw2WyqVKtJ8AICCERQkXdfT6XRdXZ2xazKZLBZLLBa7wJekUqnDhw/v3LmzGPMBAApJUJBmZ2eVUjabLXfEbDZnMpkLfMn999//1a9+1bjFtyj7Z3w+Xx5HBYCy4PP5cj8GSz3LxQl6hqRpmlIqGAw2NjYaR2ZmZiorK5da/8ADD3z00UfPPPPMwodMOaFQKO9zAkC5cLvdbrfb2JbfJFlBqq2tjUQixm40GtV1vb6+ftHFe/fu/ec///mHP/zBYrEUcUYAQKEIumWnlGpra+vv708kEkopv9/vcDiMR0pDQ0NzXwHft2/f+Pj4008/XVlZmUqleKkBAJYBQVdISimXyzUxMeF0OquqqqxWq9/vN44HAoF4PN7V1WXsPv/880qpLVu2GLtXXnnl+Ph4SQYGAOSLrCBpmtbX17fw+KFDh+bu8mQIAJYfWbfsAACXLYIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABHMpR5gvnA4PDg4qOt6a2trS0vLomuy2WwgEJicnEyn0zt37izyhACAQpAVpFAotGvXrj179qxevbq3t3dqaqqrq2vhsocffvjo0aMbNmwIBoMECQCWB1m37Lxeb0dHh8vluvPOOw8ePOj1ejOZzMJljzzyyMmTJ++7777iTwgAKBBZQRodHW1qajK2m5ubk8nk2NjYwmWaphV3LgBAwQkKkq7r6XS6rq7O2DWZTBaLJRaLfZnvaf+Mz+fLw4gAUFZ8Pl/ux2CpZ7k4Qc+QZmdnlVI2my13xGw2L3rL7tKFQqEvOxYAlC232+12u41t+U0SdIVk3IgLBoO5IzMzM5WVlaWbCABQPLKCVFtbG4lEjN1oNKrren19fWmnAgAUh6AgKaXa2tr6+/sTiYRSyu/3OxwO45HS0NDQwMBAblk2m02lUsbdvFQqlUqlSjQvACBvBD1DUkq5XK6JiQmn01lVVWW1Wv1+v3E8EAjE4/Hcv0k6evRoT0+Psb1p0yal1OnTp3n1DgDK2hXGqwTLkt1u56UGFIjx3mbucTEgn/wfibJu2QEALlsECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiFCuQQqHw/v379+7d+/rr79e6lmQHz6fr9Qj4PPhI0N+lWWQQqFQe3t7dXV1Q0NDb2/vwMBAqSdCHvT19ZV6BHw+fGTIL3OpB/givF5vR0eHy+VSStXU1Hg8ns7OzoqKilLPBQD44sryCml0dLSpqcnYbm5uTiaTY2NjpR0JAPAlld8Vkq7r6XS6rq7O2DWZTBaLJRaLLVzpdDrtdntRh8OXU3afF/esyu4ju5w5nc5Sj3AR5Rek2dlZpZTNZssdMZvNmUxm4crDhw8XbywAwJdTfrfsNE1TSgWDwdyRmZmZysrK0k0EAMiDsgxSbW1tJBIxdqPRqK7r9fX1pZ0KAPAllV+QlFJtbW39/f2JREIp5ff7HQ5H7pESAKBMld8zJKWUy+WamJhwOp1VVVVWq9Xv95d6IgDAl3WF8Y4AAAClVZa37AAAyw9BAgCIUJbPkC4qHA4PDg7qut7a2trS0lLqcXARJ0+ePHv2bG735ptvXrduXenGwSKy2WwgEJicnEyn0zt37pz7P3G6ybTURyb5dFuGQQqFQrt27dqzZ8/q1at7e3unpqa6urpKPRQu5OWXXz5x4oTD4TB2169fL+cMgeHhhx8+evTohg0bgsHg3J9unG5iLfWRST7dluFLDffee+/69ev37t2rlBoeHvZ4PG+99RZ/elWyffv2KaUOHjxY6kGwpFQqpWna8PBwd3f3+Ph47jinm1hLfWSST7dl+AyJP71ajhKJxMjIyJkzZ0o9CBZn/IWUhTjdxFrqI1OCT7fldsvu0v/0KkR57bXXJicnz5w5U11d/fTTT/MvncsCp1uZEnu6LbcrpEv/06uQw+PxvPPOO88+++zJkyevv/767u7uUk+ES8LpVo4kn27LLUj86dVylPuJpmmay+UKh8O6rpd2JFwKTrdyJPl0W4ZB4k+vlrVkMqmUMpuX283kZYnTrdxJO92WW5AUf3q1DOUeg587d66vr+/GG2+8wPNYlEQ2m02lUsbtuFQqlUqljOOcbmIt9ZFJPt2W4WvfqVSqp6dnZGQk96dX165dW+qhcCG33Xbb+fPnV65cGY/HGxoafv3rX1dXV5d6KPw/r776ak9Pz9wjp0+f1jSN002spT4yyafbMgyS4fz5859++innRrlIpVKnT5/etGmTnF/WcOk43cqL2NNt2QYJAFBeluEzJABAOSJIAAARCBIAQASCBAAQgSABAEQgSACwnE1PT587d67UU1wSKX8xAgCQX+fPn+/p6fnoo4+uueaar3zlK7/5zW9KPdFF8O+QAGB52rt379q1a0X9Pe8LI0gAsAylUqmGhoa///3vb7311po1a+x2e6knujhu2QHAMnTq1ClN0+66664NGzacOXPmpptuOnDgQKmHugiCBABlIJvNBgKBycnJdDq9c+fOuf9TOBweHBzUdb21tbWlpcU4mEwm4/H4gw8+eNNNNyUSiS1btuzevfu6664rxeyXirfsAKAMPPzww3v27Hn22Wf3798/93goFGpvb6+urm5oaOjt7R0YGDCOb968WSm1adMmpdSKFSs2b978r3/9q+hTfz48QwKAMpBKpTRNGx4e7u7uHh8fzx2/9957169fv3fvXqXU8PCwx+N56623KioqlFI7duzweDxbt2795JNPtm7deuzYsWuvvbZk/wcuAVdIAFB62Wz23XffnXtkamrqf//7X253qf9UxOjoaFNTk7Hd3NycTCZz/wm+Rx999Be/+MV9993X3t7+4IMPCq+R4hkSAEhgMpn++te/fvvb377pppuUUlNTU4cPHzauey5A1/V0Op37r/SaTCaLxRKLxYzd+vr6Y8eOTU9Pr1ixwrhmEo4gAYAIHo/niSeeUErZbLZLqZFSynjmYrPZckfMZrPxny3PsVgs+Z60ULhlBwBSeDyeV1999cknn7yUGqnP7uMFg8HckZmZmcrKykLNV2AECQCkOHv2bDabXbdu3alTpy5lvaZptbW1kUjE2I1Go7qu19fXF3LGAiJIACDC2bNnBwcHH3rooXvuuWdsbGxek7LZbCqVMm7HpVKpVCplHG9ra+vv708kEkopv9/vcDhyj5TKDq99A0DpZbNZr9f7wAMP5I48+eSTP/zhD6+++mpj99VXX+3p6Zn7JadPn9Y0LZVK9fT0jIyMVFVVWa1Wv9+/du3aoo6ePwQJAMre+fPnP/300/JNkYEgAQBE4BkSAEAEggQAEIEgAQBEIEgAABH+D7tE6ROsPyl8AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%to obtain n random values of volume, we will use\n", "V=random(V_pd,1,n);\n", "\n", "%similar approach will be applied on remaining variables\n", "p=random(p_pd,1,n);\n", "fc=random(fc_pd,1,n);\n", "vc=random(vc_pd,1,n);\n", "\n", "%we will apply the whole formula to obtain n possible results\n", "P=p.*(V-vc)-fc;\n", "\n", "%and we will plot the results\n", "hist(P,100)\n", "xlim([0,15000000]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and again" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "n =\n", "\n", " 1\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAB3RJTUUH5gIGFAkjO+ifFAAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAwNi1GZWItMjAyMiAyMjowOTozNY0GY/oAAB7FSURBVHic7d1rbFv1/fjxL44PrU1Gqg43IVPV/NqApbVAHQWTQbNuKNmlD4rSRkVK1mhMIGoUz4pgqwYV1FU3qYwZMUcwswxpqcIULgV2QVW5VFGySKuKoUtryTGDIpZ4w4KVes6Jr/k/OMLKP5c2DMf+OLxfj845+yb6TNbJO+fScMXMzIwCAKDUTKUeAAAApQgSAEAIggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEcylHuB/kcvlgsHgxMREJpPZvXt3qccBABTAFTMzM6We4XM7cODA8ePHN23aFAqFxsbGSj0OAKAAyjJI6XRa07ShoaHu7m6CBAArQ1k+Q9I0rdQjAAAKrCyDBABYecrypYYl2rt376lTp0o9BQCI4HQ6jx49WuopLmUlB+nUqVPhcLjUU2Cp7HZ7yT8vv9+vlHK73aUdo1xI+MiwdHa7vdQjXAa37AAAIpTlFVIul8tms9lsVimVTqcVrzkAQPkryyAdP368p6fH2N6yZYtS6uzZszSp3HV3d5d6BHw+fGQorLIM0o4dO3bs2FHqKVBgPLkpO3xkKCyeIQEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABHOpB5grEokMDAzout7a2trS0rLYspMnTx4/fryiomLXrl2NjY3FnBAAsBxkXSGFw+H29vbq6uqGhgav19vf37/gst7e3gMHDmzduvXrX//6j3/841deeaXIcwIACk7WFZLP5+vo6HC5XEqpmpoaj8fT2dlZUVExe002m33qqaeeeOIJ4/qpqqrq0UcfveOOO0ozMQCgQGRdIY2MjDQ1NRnbzc3NqVRqdHR0zppQKJTJZG699VZjt6mp6aOPPjpz5kxRBwUAFJqgIOm6nslk6urqjF2TyWS1WuPx+Jxl119/vVLq7Nmzxu7Y2JhS6uOPPy7eoACAZSAoSDMzM0opm82WP2I2m7PZ7Jxlq1at2rlz56FDh06ePPnmm28+9thjZrM5l8st+D3tn/H7/cs3OQDI5Pf78z8GSz3L5Ql6hqRpmlIqFArl35qbnp62WCzzV/7iF7/o6+t77rnnNE07dOhQV1eX8bXzhcPh5RsYAIRzu91ut9vYlt8kWUGqra2NRqPGbiwW03W9vr5+wZXGiw9KqdHRUU3Ttm3bVrxBAQDLQNAtO6VUW1tbX19fMplUSgUCAYfDYTxSGhwcnP0K+HvvvWfco5ucnDx8+PA999wz5008AEDZEXSFpJRyuVzj4+NOp7OysrKqqioQCBjHg8FgIpHo6uoydl988cX+/v7Vq1dPTU398Ic/7O7uLt3IAIDCuMJ4lWBFstvtPEPC52K8/JK/5w6sJPJ/JMq6ZQcA+NIiSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQwVzqAeaKRCIDAwO6rre2tra0tCy27OTJkydOnMhkMjfccMOdd965atWqYg4JACg4WVdI4XC4vb29urq6oaHB6/X29/cvuCwQCDz00EObN2/+5je/+eKLL959991FnhMAUHCyrpB8Pl9HR4fL5VJK1dTUeDyezs7OioqKOcsGBwe7u7s7OjqUUps3b/7+978/NTVltVpLMDEAoEBkXSGNjIw0NTUZ283NzalUanR0dP6y2traRCJhbOu6bjabuWUHAOVO0BWSruuZTKaurs7YNZlMVqs1Ho/PX3nw4MGf/exn7733nqZpY2NjR44cmX8VZbDb7cZGd3e32+1ensEBQCi/39/b21vqKZZKUJBmZmaUUjabLX/EbDZns9n5K6PR6KeffqqUuuqqq3Rdn5iYWOx7hsPhZZgUAMqD2+3O/y6e/wVdLEFB0jRNKRUKhRobG40j09PTFotlzrJcLufxeB555JE77rhDKfWjH/1o+/bt27Zt27x5c5EHBgAUkKBnSJqm1dbWRqNRYzcWi+m6Xl9fP2dZMplMJBLXXnutsWuz2a688soPP/ywqLMCAApNUJCUUm1tbX19fclkUikVCAQcDofxSGlwcDD/CrjFYqmpqTlx4oSxOzQ0pOv69ddfX6KRAQCFIeiWnVLK5XKNj487nc7KysqqqqpAIGAcDwaDiUSiq6vL2H388cfvv//+Y8eOrVmz5uOPP37kkUc2btxYuqkBAAUgK0iapi34QsiRI0dm7zY0NJw8ebJYQwEAikHWLTsAwJcWQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACKYSz3AXJFIZGBgQNf11tbWlpaWBde89NJL2Wx29pE77rhD07SiDAgAWBayghQOh/fs2bNv3761a9d6vd7Jycmurq75y95+++1kMmlsf/DBB+Pj421tbcWdFABQYLKC5PP5Ojo6XC6XUqqmpsbj8XR2dlZUVMxZdujQofz2vffeu2vXrvlrAADlRdYzpJGRkaamJmO7ubk5lUqNjo5eYn0sFhseHubyCABWAEFB0nU9k8nU1dUZuyaTyWq1xuPxS3zJCy+8sGnTps2bNy+2wP4Zv99f2GkBQD6/35//MVjqWS5P0C27mZkZpZTNZssfMZvNc15emOPFF19c8CFTXjgcLtR4AFB23G632+02tuU3SdAVkvGaXCgUyh+Znp62WCyLrT916lQ0Gt25c2cxhgMALDNZQaqtrY1Go8ZuLBbTdb2+vn6x9S+99NJ3v/vdNWvWFGtAAMAyEhQkpVRbW1tfX5/xSncgEHA4HMYjpcHBwf7+/tkrp6am/vjHP7a3t5dkTgBAwQl6hqSUcrlc4+PjTqezsrKyqqoqEAgYx4PBYCKRmP246NixY9dcc82tt95aokkBAAV2hfEqwYpkt9t5qQGfi/E2Zv4hMLCSyP+RKOuWHQDgS4sgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEcylHmCuSCQyMDCg63pra2tLS8tiy7LZ7HPPPffOO+9omnb77bfffvvtxRwSAFBwsq6QwuFwe3t7dXV1Q0OD1+vt7+9fcFk6ne7s7Dx27NgNN9ywYcOGV155pchzAgAKTtYVks/n6+jocLlcSqmamhqPx9PZ2VlRUTFn2W9/+9tUKvXCCy+YTLKCCgD4n8n6gT4yMtLU1GRsNzc3p1Kp0dHR+cuOHTu2d+/eWCw2PDx84cKF4s4IAFgWgoKk63omk6mrqzN2TSaT1WqNx+NzlmWz2Q8//PDEiRN79ux55plnbrvttt/97nfFnhUAUGiCbtnNzMwopWw2W/6I2WzOZrNzluVyOaXUv/71r9dff13TtNOnT3d2dn7729/euHHj/O9pt9uNje7ubrfbvVyjA4BIfr+/t7e31FMslaAgaZqmlAqFQo2NjcaR6elpi8UyZ1lFRUVFRcXu3buN9Y2NjVdfffW5c+cWDFI4HF7mqQFALrfbnf9dPP8LuliCbtlpmlZbWxuNRo3dWCym63p9ff2cZSaTadOmTbOvnIxLKwBAWRMUJKVUW1tbX19fMplUSgUCAYfDYTxSGhwcnP0K+K5du55//vmpqSml1MmTJ6emprZu3VqikQEAhSHolp1SyuVyjY+PO53OysrKqqqqQCBgHA8Gg4lEoqury9i96667xsfHv/GNb6xZsyYejz/22GPr168v3dQAgAK4YgXf77Lb7TxDwufi9/uVUrz/ghVJ/o9EWbfsAABfWgQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACKYSz3AXJFIZGBgQNf11tbWlpaWBdecPn36/Pnz+d2bb755w4YNRZoPALA8ZAUpHA7v2bNn3759a9eu9Xq9k5OTXV1d85e9/PLLp06dcjgcxu7GjRsJEgCUO1lB8vl8HR0dLpdLKVVTU+PxeDo7OysqKuavdDqdhw8fLvqAAIDlIusZ0sjISFNTk7Hd3NycSqVGR0cXXJlMJoeHh8+dO1fE6QAAy0jQFZKu65lMpq6uztg1mUxWqzUejy+4+LXXXpuYmDh37lx1dfXTTz+d/6o57Ha7sdHd3e12uws/NAAI5vf7e3t7Sz3FUgkK0szMjFLKZrPlj5jN5mw2O3+lx+Mx7tel0+menp7u7u4///nPC37PcDi8PMMCQBlwu93538Xzv6CLJeiWnaZpSqlQKJQ/Mj09bbFY5q/MR0vTNJfLFYlEdF0vzpAAgGUiK0i1tbXRaNTYjcViuq7X19df+qtSqZRSymwWdKkHAPgfCAqSUqqtra2vry+ZTCqlAoGAw+EwHg4NDg729/fnl+XfdLhw4UJvb++NN95oXF0BAMqXrAsLl8s1Pj7udDorKyurqqoCgYBxPBgMJhKJ/L9J+slPfnLx4sXVq1cnEomGhoYyemQHAFiMrCBpmrZgXY4cOTJ7969//WuxJgIAFImsW3YAgC8tggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQwl3qAuSKRyMDAgK7rra2tLS0tl14cDAbfe++97du322y24owHAFgmsq6QwuFwe3t7dXV1Q0OD1+vt7++/xOJYLPbTn/70oYce+uCDD4o2IQBgmcgKks/n6+jocLlcd9555+HDh30+XzabXWzxgQMH3G53MccDACwfWUEaGRlpamoytpubm1Op1Ojo6IIr//SnPymlduzYUbzhAADLSdAzJF3XM5lMXV2dsWsymaxWazwen7/yk08+efzxx//whz9c9nva7XZjo7u7m8spAF82fr+/t7e31FMslaAgzczMKKVmv55gNpsXvGXn9Xrvvvvu6urqdDp96e8ZDocLOyQAlBG3253/XTz/C7pYgm7ZaZqmlAqFQvkj09PTFotlzrJTp06dPn36a1/72tDQ0PDwsFLq7bfffvfdd4s5KgCg4ARdIWmaVltbG41Gjd1YLKbren19/ZxlJpNpy5Ytzz77rFIql8sppd54442rrrpq/koAQBkRFCSlVFtbW19f33e+851Vq1YFAgGHw2E8UhocHEwmk11dXUqpxsbGxsZGY306nd6yZcsDDzyQPwIAKFOyguRyucbHx51OZ2VlZVVVVSAQMI4Hg8FEImEECQCwIskKkqZpC74QcuTIkcXW89oCAKwMgl5qAAB8mREkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAggrnUA8wViUQGBgZ0XW9tbW1paVlwzZkzZ958883JyUmz2bx9+/bvfe97RR4SAFBwsq6QwuFwe3t7dXV1Q0OD1+vt7+9fcNmbb775n//855Zbblm3bt2hQ4cOHz5c5DkBAAUn6wrJ5/N1dHS4XC6lVE1Njcfj6ezsrKiomLOsp6cnv33dddft37//wIEDRR0UAFBosq6QRkZGmpqajO3m5uZUKjU6OnrpL0kkEuvWrVv+0QAAy0vQFZKu65lMpq6uztg1mUxWqzUejy+4eGxsbHBwMB6Pf/jhhz6fr3hTAgCWh6ArpJmZGaWUzWbLHzGbzdlsdsHFa9as2bp167p16/7973///e9/X+x72j/j9/sLPjAACOf3+/M/Bks9y+UJukLSNE0pFQqFGhsbjSPT09MWi2XBxevXr1+/fr1SaufOne3t7Tt27JhdsrxwOLxs8wKAdG632+12G9vymyToCknTtNra2mg0auzGYjFd1+vr6y/9VcaC999/f9nnAwAsJ0FBUkq1tbX19fUlk0mlVCAQcDgcxiOlwcHB2a+A5990yGazv/zlL6+55pr8RRUAoEwJumWnlHK5XOPj406ns7KysqqqKhAIGMeDwWAikejq6jJ2Dx48GI1GV69ePTU19X//93+/+c1vTCZZZQUAfF6ygqRpWm9v7/zjR44cmb174sSJYk0EACgSLiwAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIIK51APMFYlEBgYGdF1vbW1taWlZbM1rr732/vvvX3XVVTt37mxoaCjykACAgpN1hRQOh9vb26urqxsaGrxeb39//4LLOjo63n///VtuuUXTtL1797700ktFnhMAUHCyrpB8Pl9HR4fL5VJK1dTUeDyezs7OioqKOcveeOONq6++2tiuqqp66qmn2traij0rAKCgZF0hjYyMNDU1GdvNzc2pVGp0dHT+snyNlFI2my2dThdpPgDAshEUJF3XM5lMXV2dsWsymaxWazwev8SXpNPpo0eP7t69uxjzAQCWk6AgzczMKKVsNlv+iNlszmazl/iS+++//6tf/apxi29B9s/4/f4CjgoAZcHv9+d/DJZ6lssT9AxJ0zSlVCgUamxsNI5MT09bLJbF1j/wwAMfffTRM888M/8hU144HC74nABQLtxut9vtNrblN0lWkGpra6PRqLEbi8V0Xa+vr19w8f79+//xj3/8/ve/t1qtRZwRALBcBN2yU0q1tbX19fUlk0mlVCAQcDgcxiOlwcHB2a+AHzhwYGxs7Omnn7ZYLOl0mpcaAGAFEHSFpJRyuVzj4+NOp7OysrKqqioQCBjHg8FgIpHo6uoydp9//nml1LZt24zdK6+8cmxsrCQDAwAKRVaQNE3r7e2df/zIkSOzd3kyBAArj6xbdgCALy2CBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARzKUeYK5IJDIwMKDremtra0tLy4JrcrlcMBicmJjIZDK7d+8u8oQAgOUgK0jhcHjPnj379u1bu3at1+udnJzs6uqav+zhhx8+fvz4pk2bQqEQQQKAlUHWLTufz9fR0eFyue68887Dhw/7fL5sNjt/2SOPPHL69On77ruv+BMCAJaJrCCNjIw0NTUZ283NzalUanR0dP4yTdOKOxcAYNkJCpKu65lMpq6uztg1mUxWqzUej3+R72n/jN/vL8CIAFBW/H5//sdgqWe5PEHPkGZmZpRSNpstf8RsNi94y27pwuHwFx0LAMqW2+12u93GtvwmCbpCMm7EhUKh/JHp6WmLxVK6iQAAxSMrSLW1tdFo1NiNxWK6rtfX15d2KgBAcQgKklKqra2tr68vmUwqpQKBgMPhMB4pDQ4O9vf355flcrl0Om3czUun0+l0ukTzAgAKRtAzJKWUy+UaHx93Op2VlZVVVVWBQMA4HgwGE4lE/t8kHT9+vKenx9jesmWLUurs2bO8egcAZe0K41WCFclut/NSAz4X423M/ENgYCWR/yNR1i07AMCXFkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAilGuQIpHIwYMH9+/f//rrr5d6FhSG3+8v9Qj4fPjIUFhlGaRwONze3l5dXd3Q0OD1evv7+0s9EQqgt7e31CPg8+EjQ2GZSz3A/8Ln83V0dLhcLqVUTU2Nx+Pp7OysqKgo9VwAgP9dWV4hjYyMNDU1GdvNzc2pVGp0dLS0IwEAvqDyu0LSdT2TydTV1Rm7JpPJarXG4/H5K51Op91uL+pw+GKEfF7ciVo6IR8ZlsLpdJZ6hMsovyDNzMwopWw2W/6I2WzOZrPzVx49erR4YwEAvpjyu2WnaZpSKhQK5Y9MT09bLJbSTQQAKICyDFJtbW00GjV2Y7GYruv19fWlnQoA8AWVX5CUUm1tbX19fclkUikVCAQcDkf+kRIAoEyV3zMkpZTL5RofH3c6nZWVlVVVVYFAoNQTAQC+qCuMdwQAACitsrxlBwBYeQgSAECEsnyGdFmRSGRgYEDX9dbW1paWllKPg8s4ffr0+fPn87s333zzhg0bSjcOFpDL5YLB4MTERCaT2b179+z/idNNpsU+Msmn2woMUjgc3rNnz759+9auXev1eicnJ7u6uko9FC7l5ZdfPnXqlMPhMHY3btwo5wyB4eGHHz5+/PimTZtCodDsn26cbmIt9pFJPt1W4EsN995778aNG/fv36+UGhoa8ng8b731Fn96VbIDBw4opQ4fPlzqQbCodDqtadrQ0FB3d/fY2Fj+OKebWIt9ZJJPtxX4DIk/vVqOksnk8PDwuXPnSj0IFmb8hZT5ON3EWuwjU4JPt5V2y27pf3oVorz22msTExPnzp2rrq5++umn+ZfOZYHTrUyJPd1W2hXS0v/0KuTweDzvvPPOs88+e/r06euvv767u7vUE2FJON3KkeTTbaUFiT+9Wo7yP9E0TXO5XJFIRNf10o6EpeB0K0eST7cVGCT+9GpZS6VSSimzeaXdTF6RON3KnbTTbaUFSfGnV8tQ/jH4hQsXent7b7zxxks8j0VJ5HK5dDpt3I5Lp9PpdNo4zukm1mIfmeTTbQW+9p1Op3t6eoaHh/N/enX9+vWlHgqXctttt128eHH16tWJRKKhoeFXv/pVdXV1qYfC/+fVV1/t6emZfeTs2bOapnG6ibXYRyb5dFuBQTJcvHjx008/5dwoF+l0+uzZs1u2bJHzyxqWjtOtvIg93VZskAAA5WUFPkMCAJQjggQAEIEgAQBEIEgAABEIEgBABIIEACvZ1NTUhQsXSj3Fkkj5ixEAgMK6ePFiT0/PRx99dM0113zlK1/59a9/XeqJLoN/hwQAK9P+/fvXr18v6u95XxpBAoAVKJ1ONzQ0/O1vf3vrrbfWrVtnt9tLPdHlccsOAFagM2fOaJp21113bdq06dy5czfddNOhQ4dKPdRlECQAKAO5XC4YDE5MTGQymd27d8/+nyKRyMDAgK7rra2tLS0txsFUKpVIJB588MGbbropmUxu27Zt79691113XSlmXyresgOAMvDwww/v27fv2WefPXjw4Ozj4XC4vb29urq6oaHB6/X29/cbx7du3aqU2rJli1Jq1apVW7du/ec//1n0qT8fniEBQBlIp9Oapg0NDXV3d4+NjeWP33vvvRs3bty/f79SamhoyOPxvPXWWxUVFUqpXbt2eTye7du3f/LJJ9u3bz9x4sS1115bsv8DS8AVEgCUXi6Xe/fdd2cfmZyc/O9//5vfXew/FTEyMtLU1GRsNzc3p1Kp/H+C79FHH/35z39+3333tbe3P/jgg8JrpHiGBAASmEymv/zlL9/61rduuukmpdTk5OTRo0eN655L0HU9k8nk/yu9JpPJarXG43Fjt76+/sSJE1NTU6tWrTKumYQjSAAggsfjeeKJJ5RSNpttKTVSShnPXGw2W/6I2Ww2/rPleVartdCTLhdu2QGAFB6P59VXX33yySeXUiP12X28UCiUPzI9PW2xWJZrvmVGkABAivPnz+dyuQ0bNpw5c2Yp6zVNq62tjUajxm4sFtN1vb6+fjlnXEYECQBEOH/+/MDAwEMPPXTPPfeMjo7OaVIul0un08btuHQ6nU6njeNtbW19fX3JZFIpFQgEHA5H/pFS2eG1bwAovVwu5/P5HnjggfyRJ5988gc/+MHVV19t7L766qs9PT2zv+Ts2bOapqXT6Z6enuHh4crKyqqqqkAgsH79+qKOXjgECQDK3sWLFz/99NPyTZGBIAEAROAZEgBABIIEABCBIAEARCBIAAAR/h96SekTsnQR1QAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n=1\n", "\n", "%to obtain n random values of volume, we will use\n", "V=random(V_pd,1,n);\n", "\n", "%similar approach will be applied on remaining variables\n", "p=random(p_pd,1,n);\n", "fc=random(fc_pd,1,n);\n", "vc=random(vc_pd,1,n);\n", "\n", "%we will apply the whole formula to obtain n possible results\n", "P=p.*(V-vc)-fc;\n", "\n", "%and we will plot the results\n", "hist(P,100)\n", "xlim([0,15000000]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we can see, the output is random. Lets try 100 simulations" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "n =\n", "\n", " 100\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAB3RJTUUH5gIGFAoqaRl0cwAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAwNi1GZWItMjAyMiAyMjoxMDo0MhxLBqQAABtHSURBVHic7d1/TBR33sDx7+GOBfTUtgI9EwIiyh8lKgRXk9N4TTRpyHMmiukf9jBp7+6pNLvZkOqRtDxWDfeH15yXu93UQkyfCJEL6SU1uZ4xEm0ISuI8K9XiklCugcQDU821FLuuMLA+f8zjPFuWXVZ+7HwG36+/ZofZ8bO7DG9ndsWfPH78WAEAYLcMuwcAAEApggQAEIIgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEZwepu7v7b3/72/379+0eBAAwVy67B5i9+/fv/+53v7tz5865c+dycnLsHgcAMCcOPkOqr6/3er12TwEAmB9ODdLf//53pVRlZaXdgwAA5ocjL9l9++23f/rTn/7617/aPQh+xO/3K6W2bt3qdrtnd1+lFGe9wDPLkUE6fvz4b37zm7y8PMMwkmxWXV2t63rapsJSVaiptYFAYNb3NdTA7O4OYEZut7ulpcXuKZJxXpB0XQ8Gg/v27evo6JicnFRKffHFF6tWrSouLo7fsq+vz44Zn0XV1dX9+stL1dqw+vxpn3a/3//fgdBy9cp3aqClpWUWJ1iwRUlJCYeYg5SUlNg9wgycF6SMjIzS0tLW1lalVDQaVUpdvnx52bJl8UECADiI84JUUVFRUVFhLhuGUVpaevjwYWsNAMChnPopOwC283g8do+ARcV5Z0ixNE3jEjZgFz4SifnFGRIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABFcdg/wI7du3bpy5crw8LDL5dq5c+err7467WbBYHBwcNC6uWXLloKCgjSNCABYGLKCdOXKle+++27r1q137tw5ceJEMBisr6+P3+z8+fO6rpeVlZk3i4qKCBIAOJ2sINXW1lrL69evr6urmzZISim3293Q0JCuuQAAC07ue0jhcDg3NzfRV8fGxjo7O0OhUDpHAgAsHFlnSEqpnp6etra2Bw8e3Llz59SpU4k2a29vHxoaCoVCeXl5TU1NhYWF025WUlJiLng8Hq/XuxADA4BYfr8/EAjYPUWqxJ0hrVq1avPmzbm5ud98882XX3457TY+n+/mzZutra3BYHDDhg0ejyfR3vqeoEYAnkFer9f6MWj3LDMTd4aUn5+fn5+vlNqzZ8/+/fsrKytzcnKmbGOt0TStpqZm3759kUgkKysr3bMCAOaPuDMkS3FxsVJqYGAg+Wbj4+NKKZdLXFkBAE9FVpC6urrMhcnJyQ8++GD16tUVFRVKqba2tubm5vjNRkZGAoHAxo0bNU1L/7QAgHkk68Ti2LFjd+/ezczMfPjw4dq1az/66KOMjAylVHd3dzgcPnjwoLnZkSNHRkdHMzMzw+FweXm5g96yAwAkIitIly5dmnb9yZMnY29eu3YtLeMAANJH1iU7AMAziyABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABJfdA8zGrVu3rly5Mjw87HK5du7c+eqrr9o9EQBgrhx5hnTlypXvvvtu69atubm5J06caGhosHsiAMBcOfIMqba21lpev359XV1dfX29jfMAAObOkWdIscLhcG5urt1TAADmypFnSEqpnp6etra2Bw8e3Llz59SpU4k2KykpMRc8Ho/X603XdHby+/26riulWlpaUtzS7XabT078mtmprq6edidz2X+S+6b+kIFnjd/vDwQCdk+RKqeeIa1atWrz5s25ubnffPPNl19+mWizvieekRrput4U+Kxff/mmfs/v98+4cUhf1q+/bH2/BgKBfv3lkL7M/Pk+a/36y7G7nTLb7PZvzpZkt6k8ZOBZ4/V6rR+Dds8yM6eeIeXn5+fn5yul9uzZs3///srKypycHLuHkmKpWjuuBlPbsnCpWjvlvkoppUJzHGCmL81m/8l3m+JDBiCWU8+QLMXFxUqpgYEBuwcBAMyJI4PU1dVlLkxOTn7wwQerV6+uqKiwdyQAwBw58pLdsWPH7t69m5mZ+fDhw7Vr13700UcZGY4sKwDA4sggXbp0ye4RAADzjBMLAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiuOwe4Ef6+/vb29sHBgaWLVu2Z8+e8vLyaTcLBoODg4PWzS1bthQUFKRpRADAwpB1hnTgwIGBgYGtW7dqmlZdXf3pp59Ou9n58+ebmpr+54l///vfaZ4TADDvZJ0hXb58ecWKFebyypUrT58+vXfv3mm3dLvdDQ0NaRwNALCwZJ0hWTVSSuXk5BiGkWjLsbGxzs7OUCiUlrkAAAtO1hmSxTCMlpaWqqqqRBu0t7cPDQ2FQqG8vLympqbCwsJpNyspKTEXPB6P1+tdiFEBQCy/3x8IBOyeIlVCg/TOO++8+OKLNTU1037V5/OZ1+sMw6itrfV4PJ999tm0W/b19S3glAAgm9frtf4ubv0FXSxZl+xMhw8fvnfv3unTp5csWTLtBjk5OeaCpmk1NTX9/f2RSCSNAwIA5p+4M6S6urqvv/767Nmz2dnZqWw/Pj6ulHK5xD0QAMBTkXWGVF9f39PT09TUlJWVZRiG9aGGtra25uZma7Ouri5zYWRkJBAIbNy4UdM0G8YFAMwfWScWn3zyiVJq+/bt5s2lS5f29PQopbq7u8Ph8MGDB831R44cGR0dzczMDIfD5eXlDnrLDgCQiKwgJfoMwsmTJ2NvXrt2LS3jAADSR9YlOwDAM4sgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASX3QPMRn9/f3t7+8DAwLJly/bs2VNeXm73RACAuXLkGdKBAwcGBga2bt2qaVp1dfWnn35q90QAgLly5BnS5cuXV6xYYS6vXLny9OnTe/futXckAMAcOfIMyaqRUionJ8cwDBuHAQDMC0cGyWIYRktLS1VVVaINSp7w+/3pHGyBVFdXl/xYdXV18rvoum5tqev60/6JJXFmsZMkU8XvzXyM1rR+v9/cci5/SpLHbj2l8d8hqT/2ubwuT/WUzuX72RoyyWzz+ypDAusImt1BlGaOvGRneeedd1588cWamppEG/T19aVznoWm63qeOqGU+kYdNRd0/Wjyu1y/fn2ZemW5euWm/vEs/rilqvB59eYP6nOl1HL1yg/q8+vXr7vd7lmN//+s3cbv7Xn1xlK11ppW13VzzTdqhkcaL5XHbj6l42pgyo/gp3rsc3ldUn9KrZHip02FNWSi2WIf8ry8ypDA6/V6vV5zWX6THBykw4cP37t37+OPP16yZIndswAA5sqpQaqrq/v666/Pnj2bnZ1t9ywAgHngyCDV19f39PScPXs2KyvL/ESDpml2DwUAmBNHBumTTz5RSm3fvt28uXTp0p6eHlsnAgDMlSODtMg+qgAAUE7/2DcAYNEgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABJfdA/xINBrt7u4eGhqamJioqqpKtFkwGBwcHLRubtmypaCgIB3zAQAWjKwgHT169OLFi+vWrevt7U0SpPPnz+u6XlZWZt4sKioiSADgdLKC9P777zc0NHR0dHg8nuRbut3uhoaG9EwFAEgDWe8haZqW4pZjY2OdnZ2hUGhB5wEApI2sM6TUtbe3Dw0NhUKhvLy8pqamwsJCuycCAMyJrDOkFPl8vps3b7a2tgaDwQ0bNiS5vlfyhN/vT+eEACCB3++3fgzaPcvMHHmGlJOTYy5omlZTU7Nv375IJJKVlRW/ZV9fX3pHAwBBvF6v1+s1l+U3yZFnSLHGx8eVUi6XI8sKALDIClI0GjUMY3JyUillGIZhGOb6tra25uZma7Ouri5zYWRkJBAIbNy4MfVPQwAAZJJ1YnHx4sXa2lpzubS0VCl1+/ZtTdO6u7vD4fDBgwfNLx05cmR0dDQzMzMcDpeXlwcCAdsmBgDME1lBqqysrKysjF9/8uTJ2JvXrl1L10QAgDSRdckOAPDMIkgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQwWX3ALMRjUa7u7uHhoYmJiaqqqrsHgcAMA8cGaSjR49evHhx3bp1vb29BAkAFgdHXrJ7//33g8Hg22+/bfcgAIB548ggaZpm9wgAgHnmyEt2jqDrulLK7XbH3oxdk+gusZJsPO19r1+/nvrGM65Jvrf4uyTaJvVHESvJn55ot7quzzhVkg1iv5TiY5/x1UzlGyDR2FPuO2WkJE/CtHefcban/eYx757kj5vd6/60A2AxWeRBKikpMRc8Ho/X603bn+v3+5sCnymlxtVgX1+fueamfk8p9Z+e/5h2kti7LFWF5kJLS0sqR52u69XV1ea9nmq259XL5spfV//XlB1OWZPKtNbeLOZOrCfhqTQFPmsKfJZkt/HP5E393q+r/yt2pGXqleRjW6yHHP+lKWJ3kuQFih3SeoGmvUv82NbClG+e+GmnPAnxs1lr4mcz9z/rbx5r/+Zs8XtL9K0+F8mfScTz+/2BQMDuKVLlyEt2qet7Ip01Ukrpur5MvfK8ejN2zfPqzWXqlSR/Q9fUWnMbcyHFnxGmparQvG/qs8Xu/3n1Zuy0qezNGjJ+b4l2+1SS73baZ3LKExg/f+zrkughz/jYp30CZxzS2m38iUj8M5nomyd+2kRPgjVb/Ldiksee5OEkeuzmbNPuLZVz6FlI8kwintfrtX4M2j3LzBZ5kAAATuHIS3bRaHRycnJyclIpZRiG4mMOAOB8jgzSxYsXa2trzeXS0lKl1O3bt2kSADiaI4NUWVlZWVlp9xQAgPnEe0gAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAERw2T3AVP39/efOnYtEIrt37961a9e02wSDwcHBQevmli1bCgoK0jQfAGBhyApSX1/fa6+9dujQoRdeeOH48ePDw8MHDx6M3+z8+fO6rpeVlZk3i4qKCBIAOJ2sIJ06derAgQM1NTVKqZdeesnn873++utLliyJ39Ltdjc0NKR9QADAQpH1HtLVq1e3bdtmLu/YsWN8fLyrq2vaLcfGxjo7O0OhUBqnAwAsIEFnSJFIZGJiorCw0LyZkZGRnZ394MGDaTdub28fGhoKhUJ5eXlNTU3WvQAADiXoDOnx48dKqZycHGuNy+WanJyM39Ln8928ebO1tTUYDG7YsMHj8STaZ8kTfr9/IWYGAMn8fr/1Y9DuWWYm6AxJ0zSlVG9vb0VFhbnm0aNHWVlZ8Vta0dI0raamZt++fZFIZNot+/r6FmxeAJDO6/V6vV5zWX6TBJ0haZq2Zs2au3fvmjfv378fiUSKi4uT32t8fFwp5XIJKisAYBYEBUkptXfv3jNnzoyNjSmlGhsby8rKzDeH2trampubrc2sTzqMjIwEAoGNGzeaZ1cAAOeSdWJRU1Pz1Vdfud3u5cuXr1y5srGx0Vzf3d0dDoetf5N05MiR0dHRzMzMcDhcXl4eCATsGxkAMD9kBUnTtGnrcvLkydib165dS9dEAIA0kXXJDgDwzCJIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEMFl9wCz1N/ff+7cuUgksnv37l27dtk9DvAs8vv9do+ARcWRZ0h9fX379+/Py8srLy8/fvx4c3Oz3RMBz6JAIGD3CFhUHHmGdOrUqQMHDtTU1CilXnrpJZ/P9/rrry9ZssTuuQAAs+fIM6SrV69u27bNXN6xY8f4+HhXV5e9IwEA5ugnjx8/tnuGpxOJRDZv3nzp0qWCggJzTUVFxYkTJyorK6dsWV1dret62gf8P8vUK0qpsPo8do2hBsbVYKK7LFWFmlprqAGllKbWxt43frdT9j/lvrF/kPmlKZNM2UnsQuxO4hfid5t8b087ZCp7m/JMxu92ysKMjz35Q46fdtoXN8UhE42d5HlTT755koxkeaqXe8bXJV6Sx57okc6vhd7/IuZ2u1taWuyeIhnnBenhw4dlZWVffPFFdna2uWbbtm3vvffeL3/5S3sHi6Xr+vXr1+2eAljMvF6v3SNgnjnvPSRN05RSvb29FRUV5ppHjx5lZWXZOtRUbrfb7XbbPQUAOInz3kPSNG3NmjV37941b96/fz8SiRQXF9s7FQBgjpwXJKXU3r17z5w5MzY2ppRqbGwsKysrLCy0eygAwJw475KdUqqmpuarr75yu93Lly9fuXJlY2Oj3RMBAObKeR9qAAAsSo68ZAcAWHwIEgBABEe+hzQjfvWqswSDwcHBQevmli1brH/1DCGi0Wh3d/fQ0NDExERVVVXslzjcZEr0kkk+3BZhkPr6+l577bVDhw698MILx48fHx4ePnjwoN1DIZnz58/rul5WVmbeLCoqknOEwHT06NGLFy+uW7eut7c39qcbh5tYiV4yyYfbIvxQw1tvvVVUVFRXV6eU6ujo8Pl8N27c4FevSlZfX6+UamhosHsQJGQYhqZpHR0dHo+np6fHWs/hJlail0zy4bYI30PiV6860djYWGdnZygUsnsQTM/8DSnxONzESvSSKcGH22K7ZBeJRCYmJqx/J5uRkZGdnf3gwQNbh8LM2tvbh4aGQqFQXl5eU1MT/9LZETjcHErs4bbYzpDMK5A5OTnWGpfLNTk5ad9EmJnP57t582Zra2swGNywYYPH47F7IqSEw82JJB9uiy1I1q9etdYI/NWrmML6iaZpWk1NTX9/fyQSsXckpILDzYkkH26LMEj86lVHGx8fV0q5XIvtYvKixOHmdNIOt8UWJMWvXnUg623wkZGRQCCwcePGJO/HwhbRaNQwDPNynGEYhmGY6zncxEr0kkk+3Bbhx74Nw6itre3s7LR+9Wp+fr7dQyGZn//856Ojo5mZmeFwuLy8/I9//GNeXp7dQ+FHLly4UFtbG7vm9u3bmqZxuImV6CWTfLgtwiCZRkdHv//+e44NpzAM4/bt26WlpXL+sobUcbg5i9jDbdEGCQDgLIvwPSQAgBMRJACACAQJACACQQIAiECQAAAiECQAWMwePnw4MjJi9xQpkfIbIwAA82t0dLS2tvbevXurV6/+6U9/+pe//MXuiWbAv0MCgMWprq4uPz9f1O/zTo4gAcAiZBhGeXn59evXb9y4kZubW1JSYvdEM+OSHQAsQrdu3dI07Y033li3bl0oFNq0adOJEyfsHmoGBAkAHCAajXZ3dw8NDU1MTFRVVcV+qb+//9y5c5FIZPfu3bt27TJXjo+Ph8Phd999d9OmTWNjY9u3b6+url6/fr0ds6eKT9kBgAMcPXr00KFDra2tx44di13f19e3f//+vLy88vLy48ePNzc3m+s3b96slCotLVVKPffcc5s3b/7Xv/6V9qmfDu8hAYADGIahaVpHR4fH4+np6bHWv/XWW0VFRXV1dUqpjo4On89348aNJUuWKKX27dvn8/l27tz57bff7ty589KlSz/72c9sewAp4AwJAOwXjUb/+c9/xq4ZHh7+4YcfrJuJ/quIq1evbtu2zVzesWPH+Pi49V/w/eEPf/j973//9ttv79+//9133xVeI8V7SAAgQUZGxj/+8Y9f/OIXmzZtUkoNDw+3tLSY5z1JRCKRiYkJ63/pzcjIyM7OfvDggXmzuLj40qVLDx8+fO6558xzJuEIEgCI4PP5/vznPyulcnJyUqmRUsp8zyUnJ8da43K5zP+23JKdnT3fky4ULtkBgBQ+n+/ChQsffvhhKjVST67j9fb2WmsePXqUlZW1UPMtMIIEAFIMDg5Go9GCgoJbt26lsr2maWvWrLl796558/79+5FIpLi4eCFnXEAECQBEGBwcPHfu3Hvvvffb3/62q6trSpOi0ahhGOblOMMwDMMw1+/du/fMmTNjY2NKqcbGxrKyMustJcfhY98AYL9oNHrq1KnDhw9baz788MNf/epXK1asMG9euHChtrY29i63b9/WNM0wjNra2s7OzuXLl69cubKxsTE/Pz+to88fggQAjjc6Ovr99987N0UmggQAEIH3kAAAIhAkAIAIBAkAIAJBAgCI8L9lwCl56HSEkQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n=100\n", "\n", "%to obtain n random values of volume, we will use\n", "V=random(V_pd,1,n);\n", "\n", "%similar approach will be applied on remaining variables\n", "p=random(p_pd,1,n);\n", "fc=random(fc_pd,1,n);\n", "vc=random(vc_pd,1,n);\n", "\n", "%we will apply the whole formula to obtain n possible results\n", "P=p.*(V-vc)-fc;\n", "\n", "%and we will plot the results\n", "hist(P,100)\n", "xlim([0,15000000]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is closer to the expected distribution - lets change the number of bins in histogram to 10" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "n =\n", "\n", " 100\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGkCAIAAACgjIjwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAB3RJTUUH5gIGFAo2fRgoPAAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAwNi1GZWItMjAyMiAyMjoxMDo1NOwzktAAABo/SURBVHic7d1/TNT3/cDx94APDnDAtx1DTYgWmPzhOZUwtFHHJPpHyTc1gtEEd01s3Ldi7kKIpqYtAVlcTJdOsx1pQ2tNqIFm1dE13QzBGnLBmHBBtAFJTlYxYWgnqfNH4YTP3YfvH5/0whSQend8Xp/r8/HX5z589slrXj/3vM/ncxw/mpqaUgAAWC3B6gEAAFCKIAEAhCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABAhyeoB5mIYRm9v78jISDAYrKiomP6jzs7Ojo6OYDC4evXq3bt3L1q0yKohAQBR8aOpqSmrZ5hVbW1te3t7Xl7ewMBAX19feH1TU1Nzc/OBAwcyMjJOnjyZnp5++vRpC+cEAEROdJB0Xdc0zev1ulyu6UEqLS3dt29fZWWlUurGjRsvvfTSlStXUlNTrZsUABAp0feQNE2bcf2yZcvGxsbM5UAgkJSUxCU7ALA70feQZnPkyJE33njjxo0bmqb19fW9/fbbiYmJVg8FAIiILYN0+/bt+/fvK6XS0tICgcDIyMiMmzmdTp/Pt7CjAYBQxcXFwm+32y9IhmFUV1fX19dv375dKfXqq6+WlJRs2rRp1apVj23p8/n8fr8VM+JZFBQU8HzZC0+ZvRQUFFg9wlOIvoc0o4mJibGxsaVLl5oPs7KykpOTh4eHrZ0KABAh0UEyDEPX9VAopJTSdV3XdaVUSkrKkiVLOjo6zG28Xm8gEFi5cqWVgwIAIib6kl17e3tNTY257HA4lFL9/f2app04ceLgwYNtbW2ZmZnffPNNfX19bm6upZMiClwul9Uj4PvhKUN0if49pAhxgRsAwuS/JIq+ZAcA+OEgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQQfS3fSMO+Hy+7u7uWOzZ7XbHYre2GxiIGwQJMeTz+ZxOZ5raEvU962po/fr1xcXFUd9z7AZWNAmYE0FCbCWrFYtj8Pr+HzUU9X2GxWLgb6O+RyDucA8JACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACKK/XNUwjN7e3pGRkWAwWFFRMf1HoVDok08+uXr1qqZppaWlpaWlVg0JAIgK0UGqq6trb2/Py8sbGBiYHiRd151OZygU2r59eyAQ+OyzzwgSANid6CDV19cfPXrU6/W6XK7p6z/44IPJycmzZ88mJHDJEQDihOgXdE3TZlzf1tbmdDpHR0e7urru3bu3wFMBAGJBdJBmFAqFhoeHOzo6du3aderUqY0bN3744YdWDwUAiJToS3YzMgxDKfX1119/8cUXmqb19PTs2bNny5Ytubm5T25cUFBgLrhcLv56NIAfGo/H09jYaPUU82W/ICUmJiYmJlZUVJgX9IqKitLT069duzZjkPx+/4IPCABSuN3u8Hvx8Bt0sex3yS4hISEvLy8UCoXXTE1NWTgPACAqRAfJMAxd18326Lqu67q5vry8/MyZM+Pj40qpzs7O8fHxtWvXWjkoACBioi/Ztbe319TUmMsOh0Mp1d/fr2na3r17r1+//uKLL2ZmZj58+PCdd97JycmxdFIAQKREB6msrKysrGzGHx07duzYsWMLPA8AIHZEX7IDAPxwECQAgAgECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiCD6y1WBOXR3d1s9AoBoIkiwq/cb//5+49+tngJA1BAk2FWa2pKsXoj6bv+t6qK+TwDzwT0kAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAgECQAgAkECAIhAkAAAIoj+clXDMHp7e0dGRoLBYEVFxZMb9Pb23rhxo6SkJCsra+HHAwBEkegg1dXVtbe35+XlDQwMPBmk0dHR119/fXh4uKWlhSABgN2JvmRXX1/f09Nz4MCBGX9aW1vrdrsXeCQAQIyIDpKmabP96PPPP1dKlZWVLeA4AIAYEn3JbjZ37949ceLExx9/bPUgAICoEX2GNJuGhoZ9+/ZlZ2c/dcuC73g8ngUYDABE8Xg84ZdBq2d5OvudIfl8vp6envLycq/XGwqFlFJXrlzJzMzMz89/cmO/37/gAwKAFG63O3yvXX6T7BekhIQEh8PR2tqqlDIMQyl14cKFtLS0GYMEALAL0UEyDCMUCpmnQbquK6U0TSsqKioqKjI30HXd4XAcOnQovAYAYFOig9Te3l5TU2MuOxwOpVR/f/8cH70DANiX6CCVlZXN/cFuTdO4SwQA8cGWn7IDAMQfggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBESLJ6gLkYhtHb2zsyMhIMBisqKsLrBwcHz58/PzQ0lJaW9vLLLxcWFlo4JAAgKkSfIdXV1e3fv7+1tfXIkSPT11dWVg4NDa1fv17TNKfT+emnn1o0IAAgakSfIdXX1x89etTr9bpcrunrL1y4kJ6ebi5nZGS89957O3bssGJAAEDUiD5D0jRtxvXhGimlsrKydF1fqIkAALEi+gzpqXRdP3369PTbS3g2Pp8vFrvt7u6OxW7xmBg9fcXFxbHYLTAbewfp4MGDzz//fFVV1WwbFBQUmAsul8vtdi/UXPbj8Xiu+u5YPQWehcfjeb/x77HY8/+5/pejxu48Hk9jY6PVU8yXjYN06NChO3funDp1KjExcbZt/H7/Qo5kXz6fL1v9Luq7nVRDY6oz6rvFdD6fL01tSVYvRHe3k2ooRideWEhutzv8riL8Bl0suwbp8OHDX331VXNzc2pqqtWzAACiQHSQDMMIhUKhUEgpZX5ywfyYQ21tbV9fX3Nzc0pKyvT1AAD7Eh2k9vb2mpoac9nhcCil+vv7NU07c+aMUmrTpk3mj5KTk/v6+qwaEgAQFaKDVFZWVlZW9uR67gwBQPwR/XtIAIAfDoIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEAREiyeoC5GIbR29s7MjISDAYrKiqm/2hwcLClpSUQCGzbtm3r1q1WTQgAiBbRQaqrq2tvb8/LyxsYGJgeJL/fv2vXrv379z/33HMNDQ23bt165ZVXLJwTABA50Zfs6uvre3p6Dhw48Nj648ePV1ZWVlVV7d69++jRo8ePHw+FQpZMCACIFtFB0jRtxvUXL17csGGDubx58+bJyclLly4t4FwAgOgTHaQZBQKBYDC4YsUK82FCQkJqaurDhw8tHQoAECn7BWlqakoplZWVFV6TlJQ02yW7gu94PJ4Fmg8AxPB4POGXQatneTrRH2qYkXkdb2BgoKioyFzz6NGjlJSUGTf2+/0LNxkACON2u91ut7ksv0n2O0PSNG3ZsmW3b982H46OjgYCgfz8fGunAgBESHSQDMPQdd28HKfruq7r5vodO3acPHlyYmJCKdXU1LRu3brwLSUAgE2JvmTX3t5eU1NjLjscDqVUf3+/pmlVVVXXr18vLi5evHhxRkZGU1OTpWMCAKJAdJDKysrKysqeXK9pWmNj48LPAwCIHdGX7AAAPxwECQAgAkECAIhAkAAAIhAkAIAIBAkAIAJBAgCIQJAAACIQJACACAQJACACQQIAiECQAAAiECQAgAiiv+0bj/H5fE6n0+opACAmCJKddHd3p6kti9WWqO/536ou6vsEgO+FS3YAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABHs+m3fnZ2dHR0dwWBw9erVu3fvXrRokdUTAQAiYsszpKamprfeemvVqlW/+tWv/vrXv+7bt8/qiQAAkbLlGdJf/vIXl8tVWVmplFq1atVLL700Pj6emppq9VwAgGdnyzOkZcuWjY2NmcuBQCApKYlLdgBgd7Y8Qzpy5Mgbb7xx48YNTdP6+vrefvvtxMTEGbcsKCgwF1wul9vtXsAZgcc1NjY2NjbGYs//o1bFYreIAx6PJ0b/1cWCLYN0+/bt+/fvK6XS0tICgcDIyMhsW/r9/gWcC5hLjP78/H/UqajvE3HD7XaH34uH36CLZb8gGYZRXV1dX1+/fft2pdSrr75aUlKyadOmVat4kwgANma/e0gTExNjY2NLly41H2ZlZSUnJw8PD1s7FQAgQvYLUkpKypIlSzo6OsyHXq83EAisXLnS2qkAABGy3yU7pdSJEycOHjzY1taWmZn5zTff1NfX5+bmWj0UACAitgxSYWFhZ2en1VMAAKLJfpfsAABxiSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEZKsHuAZhUKhTz755OrVq5qmlZaWlpaWWj0RACAitjxD0nV9z549bW1tq1evXr58+WeffWb1RACASNnyDOmDDz6YnJw8e/ZsQoItgwoAeJItX9Db2tqcTufo6GhXV9e9e/esHgcAEAX2C1IoFBoeHu7o6Ni1a9epU6c2btz44YcfzrZxwXc8Hs9CDgkAEng8nvDLoNWzPJ39LtkZhqGU+vrrr7/44gtN03p6evbs2bNly5bc3NwnN/b7/Qs+IABI4Xa73W63uSy/SfY7Q0pMTExMTKyoqNA0TSlVVFSUnp5+7do1q+cCAETEfkFKSEjIy8sLhULhNVNTUxbOAwCICvsFSSlVXl5+5syZ8fFxpVRnZ+f4+PjatWutHgoAEBH73UNSSu3du/f69esvvvhiZmbmw4cP33nnnZycHKuHAgBExJZBUkodO3bs2LFjVk8BAIgaW16yAwDEH4IEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARLB3kHp7e8+ePTs6Omr1IACASCVZPcCzGx0dff3114eHh1taWrKysqweBwAQERufIdXW1rrdbqunAABEh12D9PnnnyulysrKrB4EABAdtrxkd/fu3RMnTnz88cdP3bKgoMBccLlcnE4B34vP53M6nVZP8T0UFxdzmD/G4/E0NjZaPcV82TJIDQ0N+/bty87O1nV97i39fv/CjATEn2S1YtC3Kuq7HVOdmnohWa2I+p59vkaC9Bi32x3+Nwm/QRfLfkHy+Xw9PT3l5eVerzcUCimlrly5kpmZmZ+fb/VoQLxJVi9EfZ+T6maM9gy7s1+QEhISHA5Ha2urUsowDKXUhQsX0tLSCBIA2Jr9glRUVFRUVGQu67rucDgOHToUXgMAsCm7fsoOABBn7HeGNJ2maXxsAQDiA2dIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQIcnqAZ7F4ODg+fPnh4aG0tLSXn755cLCQqsnAgBEypZnSJWVlUNDQ+vXr9c0zel0fvrpp1ZPBACIlC3PkC5cuJCenm4uZ2RkvPfeezt27LB2JABAhGx5hhSukVIqKytL13ULhwEARIUtz5DCdF0/ffp0RUXFbBsUFBSYCy6Xy+12L9RcyufzdXd3x2K3SqVFfbcA4pXH42lsbLR6ivmyd5AOHjz4/PPPV1VVzbaB3+9fyHlMPp/P6XSmqS1R37Ou7mjqhajvFkC8crvd4ffi4TfoYtk4SIcOHbpz586pU6cSExOtnuVxyWrF4hgE6duo7xEAxLBrkA4fPvzVV181NzenpqZaPQsAIApsGaTa2tq+vr7m5uaUlBTzEw2aplk9FAAgIrYM0pkzZ5RSmzZtMh8mJyf39fVZOhEAIFK2DJIlH1UAAMSULX8PCQAQfwgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAEIEgAQBEIEgAABEIEgBABIIEABCBIAEARCBIAAARCBIAQASCBAAQgSABAEQgSAAAEQgSAEAEggQAECHJ6gGe0eDgYEtLSyAQ2LZt29atW60eBwAQKVueIfn9/p07d2ZnZxcWFjY0NHz00UdWTwQAiJQtz5COHz9eWVlZVVWllFqyZEl1dfWePXsSExOtngsA8OxseYZ08eLFDRs2mMubN2+enJy8dOmStSMBACJkvzOkQCAQDAZXrFhhPkxISEhNTX348OGTWxYXFxcUFCzocN9JViu+VZ1R362uhpRS30Z9v0oppWI5cPT3PKluaurmpLoZ9T2r2P5TRF+M/ili99zF9D9jqw55WyguLrZ6hKewX5CmpqaUUllZWeE1SUlJoVDoyS1Pnz69cGP9N4/HE5sdr4rNbmO3Z9sNHLs9M3DM97x+/avyX3MxB/sFSdM0pdTAwEBRUZG55tGjRykpKZYO9Ti32231CABgM/a7h6Rp2rJly27fvm0+HB0dDQQC+fn51k4FAIiQ/YKklNqxY8fJkycnJiaUUk1NTevWrQvfUgIA2JT9Ltkppaqqqq5fv15cXLx48eKMjIympiarJwIAROpH5mcEAACwli0v2QEA4g9BAgCIYMt7SE/FV6/aS09Pz82bN8MPf/nLXy5fvty6cTADwzB6e3tHRkaCwWBFRcX0H3G4yTTbUyb5cIvDIPn9/l27du3fv/+5555raGi4devWK6+8YvVQmMvf/vY3n8+3bt0682Fubq6cIwSmurq69vb2vLy8gYGB6a9uHG5izfaUST7c4vBDDa+99lpubu7hw4eVUl6vt7q6+vLly3z1qmS1tbVKqaNHj1o9CGal67qmaV6v1+Vy9fX1hddzuIk121Mm+XCLw3tIfPWqHU1MTHR1dV27ds3qQTAz8xtSnsThJtZsT5kSfLjF2yW7+X/1KkQ5f/78yMjItWvXsrOz33//fX7T2RY43GxK7OEWb2dI8//qVchRXV199erV1tbWnp6elStXulwuqyfCvHC42ZHkwy3eghT+6tXwGoFfvYrHhF/RNE2rqqoaHBwMBALWjoT54HCzI8mHWxwGia9etbXJyUmlVFJSvF1MjkscbnYn7XCLtyApvnrVhsK3we/du9fY2PiLX/xijvuxsIRhGLqum5fjdF3Xdd1cz+Em1mxPmeTDLQ4/9q3rek1NTVdXV/irV3NycqweCnPZuHHjgwcPfvzjH4+NjRUWFv7xj3/Mzs62eij8l3PnztXU1Exf09/fr2kah5tYsz1lkg+3OAyS6cGDB/fv3+fYsAtd1/v7+x0Oh5w3a5g/Djd7EXu4xW2QAAD2Eof3kAAAdkSQAAAiECQAgAgECQAgAkECAIhAkAAgno2Pj9+7d8/qKeZFyjdGAACi68GDBzU1NXfu3PnpT3/6k5/85M9//rPVEz0Fv4cEAPHp8OHDOTk5or7Pe24ECQDikK7rhYWF3d3dly9f/tnPflZQUGD1RE/HJTsAiENffvmlpml79+7Ny8u7du3amjVrfve731k91FMQJACwAcMwent7R0ZGgsFgRUXF9B8NDg62tLQEAoFt27Zt3brVXDk5OTk2Nvbmm2+uWbNmYmJi06ZNTqfz5z//uRWzzxefsgMAG6irq9u/f39ra+uRI0emr/f7/Tt37szOzi4sLGxoaPjoo4/M9WvXrlVKORwOpdSiRYvWrl37r3/9a8Gn/n64hwQANqDruqZpXq/X5XL19fWF17/22mu5ubmHDx9WSnm93urq6suXLycmJiqlysvLq6urS0pK7t69W1JS0tHRsXTpUsv+D8wDZ0gAYD3DMP75z39OX3Pr1q1vv/02/HC2PxVx8eLFDRs2mMubN2+enJwM/wm+P/zhD7///e8PHDiwc+fON998U3iNFPeQAECChISEf/zjH7/+9a/XrFmjlLp169bp06fN8545BAKBYDAY/iu9CQkJqampDx8+NB/m5+d3dHSMj48vWrTIPGcSjiABgAjV1dV/+tOflFJZWVnzqZFSyrznkpWVFV6TlJRk/tnysNTU1GhPGitcsgMAKaqrq8+dO/fuu+/Op0bqu+t4AwMD4TWPHj1KSUmJ1XwxRpAAQIqbN28ahrF8+fIvv/xyPttrmrZs2bLbt2+bD0dHRwOBQH5+fixnjCGCBAAi3Lx5s6Wl5a233vrtb3976dKlx5pkGIau6+blOF3XdV031+/YsePkyZMTExNKqaampnXr1oVvKdkOH/sGAOsZhnH8+PFDhw6F17z77ru/+c1v0tPTzYfnzp2rqamZ/j/p7+/XNE3X9Zqamq6ursWLF2dkZDQ1NeXk5Czo6NFDkADA9h48eHD//n37pshEkAAAInAPCQAgAkECAIhAkAAAIhAkAIAI/w/G1gsIbOTJHQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n=100\n", "\n", "%to obtain n random values of volume, we will use\n", "V=random(V_pd,1,n);\n", "\n", "%similar approach will be applied on remaining variables\n", "p=random(p_pd,1,n);\n", "fc=random(fc_pd,1,n);\n", "vc=random(vc_pd,1,n);\n", "\n", "%we will apply the whole formula to obtain n possible results\n", "P=p.*(V-vc)-fc;\n", "\n", "%and we will plot the results\n", "hist(P,10)\n", "xlim([0,15000000]);" ] } ], "metadata": { "kernelspec": { "display_name": "Matlab", "language": "matlab", "name": "matlab" }, "language_info": { "codemirror_mode": "octave", "file_extension": ".m", "help_links": [ { "text": "MetaKernel Magics", "url": "https://metakernel.readthedocs.io/en/latest/source/README.html" } ], "mimetype": "text/x-octave", "name": "matlab", "version": "0.16.11" } }, "nbformat": 4, "nbformat_minor": 4 }